Navigating IIoT Protocols: Comparing DDS and MQTT
The convergence of Operational Technology (OT) and Informational Technology (IT) has become a strategic imperative for organizations aiming to unlock...
RTI is the world’s largest DDS supplier and Connext is the most trusted software framework for critical systems.
|
From downloads to Hello World, we've got you covered. Find all of the tutorials, documentation, peer conversations and inspiration you need to get started using Connext today.
RTI provides a broad range of technical and high-level resources designed to assist in understanding industry applications, the RTI Connext product line and its underlying data-centric technology.
RTI is the largest software framework company for autonomous systems. The company’s RTI Connext product enables intelligent architecture by sharing information in real time, making large applications work together as one.
Based on location and function, the right connectivity solution must be evaluated and selected for the various scenarios:
Between the devices and the cloud (WAN connections), DDS provides an ideal solution with:
Inside the endpoint devices themselves, DDS has been applied broadly for the same reasons listed above for device- to-cloud connections. Additionally, DDS makes it possible to design smart devices that operate very reliably and meet safety and longevity requirements in industries such as healthcare and automotive. DDS also supports diversity of transports and platforms within a system, as previously discussed in terms of gateway capabilities and routing services.
DDS has also made inroads in the cloud. Here, the requirements span a broader range and give rise to a mixture of connectivity options. DDS can support this connectivity diversity, and it can also promote longevity of cloud solutions.
In contrast, other technologies make more sense for the user-to-cloud WAN connections (see illustration). At this point in the connectivity model, traditional web technologies such as web sockets and HTTP meet the human-centric requirements with:
DDS domains make it easy to isolate subsystems with individual data communication planes. Besides facilitating security rules with logical separation, domains also make it possible to tailor endpoint discovery rules and activity levels and significantly reduce network bandwidth and CPU/memory overhead over gateway connections. As shown in the previous diagram, for example, DDS domains can be defined with:
DDS also supports a choice of transports, including UDP, TCP, shared memory, OpenSSL (TLS/SSL, DTLS), and low-bandwidth connections. For example, in the generic use case, the DDS connectivity between devices and the cloud can utilize DDS over TCP. Typically, transport guidelines are different for:
DDS is being adopted for this last category to provide remote access to any DDS data bus. DDS can manage state for seamless data-sharing and switching between cellular and Wi-Fi networks. State is managed independently of the network mobility and switching, and DDS Quality of Service (QoS) can introduce resilient rules for distributing and managing state information.
Finally, for cloud-to-human communications (mobile user endpoint devices or thin clients), you can use traditional web sockets and HTTP(s) (over TCP).
For an online demonstration of remote access from web applications, visit the RTI Connext DDS Demo site at http://info.rti.com/demo_iot.
The convergence of Operational Technology (OT) and Informational Technology (IT) has become a strategic imperative for organizations aiming to unlock...
A Comparison of DDS, TLS and DTLS Security Standards
Meet New RTI Team Member Marcos Rivera! Work environments around the globe have changed as a result of the recent pandemic, and the structure of...