ISO 26262 Certification for Software Components

The automotive industry has adopted ISO 26262 as its functional safety standard for electronic systems. The current version of ISO 26262 was published in 2011, with a second edition scheduled for release in 2018. The increased use of software in automotive systems such as driver assist, brake control and engine and systems management has placed a greater scrutiny on ensuring the software is safe. Modern vehicles now contain millions of lines of software and software quality is more important than ever. While automotive designers and suppliers have 5 years’ experience using ISO 26262, the bar for software compliance is now higher due to increased complexity, integration and automation. Moreover, one can expect regulatory oversight to increase in the future due to changing policies. In September 2016, the U.S. DOT issued a new federal policy for safe testing and deployment of automated vehicles. This new policy seeks to strike a fair balance between innovation and regulatory oversight but will require additional effort from vehicle makers and suppliers who wish to use forms of automation in their future designs.

Read More

Robots on Wheels - By 2021, This May Be the New Normal

If you drive a car, I suggest you read this post by Mark Fields, CEO of Ford Motor Company. Ford is staking their claim in the driverless car market, and it is a bold one. Ford expects to mass-produce driverless cars in 2021 for ride-hailing and ride-sharing services. And this isn’t an advanced autopilot or car with self-driving capabilities; this is a “No steering wheel. No gas pedals. No brake pedals. A driver will not be required.” fully driverless car.

Read More

DDS Proof Points for Autonomous Cars

While implementation details for autonomous cars are still tightly guarded design secrets, deployment examples in adjacent markets provide a wealth of information about DDS and its ability to solve the most challenging connectivity problems.

The following use cases have one or more connectivity issues in common with autonomous cars. Autonomous car requirements span three main areas: performance, safety, and integration. Systems must ensure performance to successfully connect components, optimize safety at every level of a fully autonomous system, and make it easier to reliably integrate complex software from diverse components.

Read More

Enabling Autonomous Cars

An autonomous car is a great example of a highly distributed dynamic system, where component objects continuously make real-time local decisions based on system-wide constraints and approximate global state. DDS evolved to specifically address this type of system, and RTI has become a trusted expert assisting the innovators of future autonomous cars.

Read More