

Darren Porras

Market Development Manager, Healthcare

🔀 dporras@rti.com

EMEA/APAC 19 October 2021

Americas 26 October 2021

rti

Surgical Robotics: The Convergence of Smart Connectivity and Data-Driven Technologies in Healthcare

©2021 Real-Time Innovations, Inc.

Darren Porras

Market Development Manager: Healthcare

Benefits of Robotically-Assisted Procedures

- Smaller incisions
- More precise and effective treatments
- Faster patient recovery

Surgical Robotics: Advanced Intelligent Systems

Converging Data-Driven Technologies

Key Drivers of Surgical Robotic Systems

- Advanced data-driven technologies, visualization and instrumentation
- Improved clinical efficiency, usability and automation
- Device modularity and portability
- Remote operation and monitoring

Key Development Challenges

- Surgical robotics (SR) systems are safety-critical and need high reliability and security.
- SR manufacturers need to develop products efficiently and support many devices and use-cases.
- Increased cybersecurity regulatory standards and expectations across the industry.

Surgical Robotics: Complex and Distributed Systems

Data Connectivity Design Challenge

Why RTI? We Enable Smart Machines.

By enabling a new generation of intelligent distributed systems, RTI boldly seeks to transform entire industries.

We particularly seek applications that promote a sustainable, safe, green, and healthy planet.

Key Design Requirements in Surgical Robotics

- Safety:
 - Fail safe, no single point of failure
- Performance:
 - Real-time, low-latency
- Reliability
 - Fault tolerant, high-quality
- Cybersecurity
 - Security by design (end-to-end)
- Interoperability/Flexibility
 - Upgradeable, configurable

Cybersecurity Risks:

- Regulatory approval
- Threat landscape
- Safety
- Hospital/User Expectations
- Business Risks

Need to develop flexible systems efficiently

- Efficient use of software resources
- Parallel development
- Configurable/upgradeable
- Reusable and Reference
 architectures

Need to develop flexible systems efficiently

- Applications
 - Urologic
 - Gynecological
 - General Surgery
 - Neurosurgery
 - Orthopedic surgery
 - Others
- Needs
 - Adapt to user needs and clinical applications
 - Leverage evolving enabling technologies
 - Next-generation systems

RTI Connext: A Connectivity Framework Designed for Intelligent Distributed Systems

Attributes: Sensing and Control in Real-Time, Safety-Critical, Cybersecurity

Data Centricity in the Virtual DDS Databus

- Applications interface only to the data
- Loosely coupled
- Configurable for different sources
- No single point of failure
- Fast, reliable, scalable, secure

RTI Connext Communication Framework Accelerates Development

RTI Connext is solving the design challenges of Robotically-Assisted Systems

RELIABILITY/ PERFORMANCE

No single point of failure

Low-latency connectivity for real-time access, control, monitoring

Optimized remote network connectivity for mobile devices/systems INTEROPERABILITY/ SCALABILITY Scalability to thousands of devices

Configurable/adaptable data inputs across devices, programs, legacy systems

EFFICIENCY/FLEXIBILITY

Allows teams to focus on applications over infrastructure

Reusable, loosely coupled architecture

Accelerates development of adaptable/upgradeable systems

CYBERSECURITY

Fine-grained/configurable security built-in

Surgical Robotics: A Common Connectivity Framework

Smart Medical Device Connectivity: RTI Connext

Routing Service

RTI Connext: Enabling next-generation healthcare systems

- Robotic-Assisted Systems are intelligent and complex digital ecosystems across devices, systems, and networks
- Data-centric connectivity is needed to address the demanding and simultaneous design requirements for these systems and fully leverage data-driven technologies
- As the leading software framework for intelligent and safety-critical distributed systems, RTI Connext is enabling and accelerating the development of surgical robotics, imaging, and connected medical devices with flexible, reliable, and secure data-centric connectivity

Try a full version of Connext DDS for 30 days

TRY CONNEXT AT RTI.COM/DOWNLOADS

Includes resources to get you up and running fast

Stay Connected

rtisoftware

connextpodcast

rti.com/blog

Data Centricity: Data is the Interface (Virtual Databus)

No single point of failure

- Modular, Scalable, Configurable
- Adaptable for different data sources
- Fully distributed/configurable

rti

Solving the simultaneous and demanding requirements of Robotically-Assisted Systems

RELIABILITY/ PERFORMANCE

No single point of failure

Configurable quality of service parameters

Low-latency connectivity for real-time access, control, monitoring

Optimized remote network connectivity for mobile devices/systems INTEROPERABILITY/ SCALABILITY

Scalability to thousands of devices

Configurable/adaptable data inputs across devices, programs, legacy systems

DEVELOPMENT EFFICIENCY/SYSTEM FLEXIBILITY

Allows teams to focus on applications over infrastructure

Cross-platform and modular architecture- transparent to application

Reusable architectures across programs

Accelerates development of adaptable/upgradeable systems

CYBERSECURITY/DATA ACCESSIBILITY

Fine-grained and configurable security plugin

Regulatory standards-based

Configurable, on-demand data access

What are the expectations of next-generation health systems?

• Needs:

- Proactive, predictive, and patient-centric healthcare delivery
- Improved outcomes
- Improved care access
- Improved clinical efficiency

•Requirements:

- Interoperability:
 - Data standards
 - Data infrastructure across boundaries/networks/applications
- Cybersecurity
- Analytics to improve therapies/outcomes/costs
- Patient-centric data ecosystem

Solving the simultaneous and demanding requirements of Robotically-Assisted Systems

RELIABILITY/ PERFORMANCE

No single point of failure

Configurable quality of service parameters

Low-latency connectivity for real-time access, control, monitoring

Optimized remote network connectivity for mobile devices/systems

INTEROPERABILITY/ SCALABILITY

Scalability to thousands of devices

Configurable/adaptable data inputs across devices, programs, legacy systems

DEVELOPMENT EFFICIENCY/SYSTEM FLEXIBILITY

Allows teams to focus on applications over infrastructure

Cross-platform and modular architecture- transparent to application

Reusable architectures across programs

Accelerates development of adaptable/upgradeable systems

CYBERSECURITY/DATA ACCESSIBILITY

Fine-grained and configurable security plugin

Regulatory standards-based

Configurable, on-demand data access

Surgical Robotics Data Sources Configurable Data-Centric Connectivity

RTI Connext: A distributed communication framework for Surgical Robotic and intelligent medical devices

- Addresses demanding and simultaneous requirements for safety, performance, reliability, interoperability, and cybersecurity
- Enables utilization of data-driven technologies and sensor fusion
- Accelerates development of scalable, reusable, and flexible applications
- Fine-grained and configurable security design

Efficient Software Development- Optimize lifecycle

- Efficient use of software resources:
 - Applications over infrastructure
 - Leverage Frameworks
- Concurrent Development
 - Design by Contract/Interface
- Configurable/Upgradeable
 - Loosely coupled architectures
 - Design reuse as requirements programs, products, evolve
 - Reference architecture from device to edge to cloud

Cybersecurity Concerns and Risks

Fine-grained and configurable cybersecurity controls are needed to design secure end-to-end communications across the device ecosystem.

Concerns	Risks
Regulatory Approval	Regulatory rejection/delays- systems need to be "secure-by-design"
Threat Landscape	Medical systems are a target, Increased level of security threats, intentional/unintentional use cases
Safety	Security=Safety. Need to address security risk inherent in complex systems
Hospital/User Expectations	Hospitals actively assessing device security risks
Business Risks	Exponential costs to business, potential IP/Revenue risk, reputation, liability

A Common Connectivity Framework

RTI Connext:

- Reliability/Performance
 - No single point of failture
 - Low-latency/real-time
- Interoperability/Scalability
 - Configurable/adaptable data models across devices/programs/systems
- Efficiency/Flexibility
 - Reusable reference architecture
 - Framework designed for safety-critical distributed systems
- Cybersecurity
 - Fine-grained/configurable

Flexible Data Connectivity for Current and Next-Generation Systems

Applications		
•	Urologic	
٠	Gynecological	

- Neurosurgery
- Orthopedic Surgery
- General Surgery
- Interventional Systems

Requirement Attributes	Needs
Adapt to user needs	System usage is expanding to a broader array of clinical applications and local/remote environments Increased needs for usability, lower costs, smaller devices, more precise treatments, care efficiency
Leverage multiple and evolving enabling technologies	Next-generation imaging, AI, machine learning algorithms, navigation integration New sensors, visualization technologies
Next-generation systems	Data/sensor fusion for precise and autonomous control Remote operation for increased access

Efficient software development to optimize lifecycle

Requirement Attributes	Needs
Efficient use of development resources	Allow team to focus on application over infrastructure/core competencies Leverage state-of-the-art tools, frameworks for infrastructure development and diagnostics
Incremental and Concurrent Development	Allow local and distributed teams to design and test to interfaces and work in parallel
Configurable and upgradeable systems	Loosely coupled architectures Allow systems/architectures to be reused as new features and data requirements evolve Leverage reference architectures across programs and product families from the device to the edge to the cloud

Flexible Data Connectivity for Current and Next-Generation Systems

Applications		
•	Urologic	
٠	Gynecological	

- Neurosurgery
- Orthopedic Surgery
- General Surgery
- Interventional Systems

Requirement Attributes	Needs
Adapt to user needs	System usage is expanding to a broader array of clinical applications and local/remote environments Increased needs for usability, lower costs, smaller devices, more precise treatments, care efficiency
Leverage multiple and evolving enabling technologies	Next-generation imaging, AI, machine learning algorithms, navigation integration New sensors, visualization technologies
Next-generation systems	Data/sensor fusion for precise and autonomous control Remote operation for increased access

Software Connectivity Design Requirements

- Safety:
 - Fail safe, no single point-failure
- Performance:
 - Real-time/Low-latency
- Reliability:
 - Fault tolerant, high quality
 - •Cybersecurity:
 - End-to-End security controls
- Flexibility:
 - Upgradeability, configurability, and interoperability

Messaging - Prevalent Real-Time Communications

Data Centricity: Data is the Interface (Virtual Databus)

- Reliable- no single point of failure
- Low-latency
- Modular, Scalable, Configurable
- Adaptable for different data sources
- Fully distributed/configurable fine-grained security

Stay Connected

rtisoftware

connextpodcast

rti.com/blog

