

1

Simplified Real Time Data Sharing
Unreal Engine plugin for RTI Connext

Introduction
This plugin makes it easy to integrate your Unreal Engine project with other applications that
you have developed using RTI Connext.

The plugin is ideal for those projects that need to publish information in real time that is
received and processed by other applications. The data types are defined in XML and a code
generator automatically creates the C++ source code so that it can be incorporated into the
Unreal Engine project. All actions are implemented in the Blueprint without the need to code
anything in C++.

2

This tutorial allows you to experiment with the plugin by following the instructions which will
take approximately 1 hour1. It is not necessary to have previous experience with Unreal Engine
or RTI Connext, since it explains how to create a project from scratch and includes explanatory
screenshots of the entire process.

1 Please note that the software listed in the prerequisites is very large and could take a couple of hours to install if you do not

already have it on your computer.

Prerequisites
Below is the list of software and hardware prerequisites that you will need during this tutorial:

● Unreal Engine 5.1.1 or 5.2.0

● RTI Connext Professional 6.1.1 or 6.1.2; or RTI Connext Drive 2.0.1

● Microsoft Visual Studio 2022 (Community version is fine)

● A Windows2 PC powerful enough to run Unreal Engine

○ System requirements are listed at: https://docs.unrealengine.com/5.1/en-

US/hardware-and-software-specifications-for-unreal-engine/

● 70 GB of free disk

○ RTI Connext ~2 GB

○ Unreal Engine (including the project that we will create) ~60 GB

○ Microsoft Visual Studio Community ~5.5 GB

2 Similar tutorials for Linux and Mac are currently under preparation.

Installing the prerequisites

Unreal Engine

Install Unreal Engine 5.1.1 or 5.2.0. The software is available at no cost:

https://www.unrealengine.com

Unreal Engine is installed using the Epic Games Launcher, which can be downloaded from the
unrealengine.com website:

https://www.unrealengine.com/

3

1. Double click on EpicInstaller-14.6.2-unrealEngine.msi and follow the

instructions to install the Launcher software on your PC. You may need to create a login

account with Epic Games to access the content in the Launcher.

2. Open the Epic Games launcher, select ‘Unreal Engine’ in the sidebar, and click on the

Library tab.

3. Click on the ‘+’ sign to add an engine, select version 5.1.1 or 5.2.0 and click on Install.

Note that the link will change to version 5.1.1 or 5.2.0. An end-user license agreement

will appear, which must be agreed to begin the download and installation.

Be aware that depending on the computer characteristics, the installation can take over an
hour.

RTI Connext

Install RTI Connext Professional 6.1.1 or 6.1.2 or RTI Connext Drive 2.0.1 on your computer. If
you need a trial version, you can request it at the following link:

https://bit.ly/43dSUfo

Install and configure RTI Connext using the following steps:

4. Run the rti_connext_dds-6.1.1-pro-host-x64Win64.exe installer and

follow the onscreen instructions to install the software on your PC. If using the Free Trial

version of Connext 6.1, the name of the installer is rti_connext_dds-6.1.1-lm-

x64Win64.exe instead.

5. When installation finishes, there is an option to ‘Open the RTI Launcher’. Ensure this

option is enabled – the RTI Launcher will then open.

6. Click on the Configuration tab in the RTI Launcher.

7. If the ‘License Information’ field is empty with a red background, click the ‘Choose’

button to open an explorer and locate the rti_license.dat file that was provided to you

by RTI.

8. If using the Free Trial version of Connext 6.1, no further steps are required.

9. Click on Install RTI Packages, then the ‘+’ sign to browse your local disk to locate the file:

rti_connext_dds-6.1.1-pro-target-x64Win64VS2017.rtipkg. This

file contains the DDS target libraries and is typically paired with the host installer of Step

1. Press ‘Install’.

https://bit.ly/43dSUfo

4

Microsoft Visual Studio

Install Microsoft Visual Studio 2022. The Community version is available at no cost:

https://visualstudio.microsoft.com

1. Download and run the installer for Visual Studio 2022: visualstudiosetup.exe

and follow the instructions to install the software on your PC

2. Make sure that you select the following packages during the installation:

● Desktop development with C++ (leave the default options)

● Individual components:

○ .NET Framework 4.8.1 targeting pack

○ .NET Framework 4.8.1 SDK

Environment variables

You will need to add in the System environment variables the full path to the RTI Connext
software:

https://visualstudio.microsoft.com/

5

1. Click on the Windows Start menu and type the word variables so that it shows Edit the

system environment variables and click on it.

2. Click on Environment Variables

3. In the System variables section, create a new variable NDDSHOME with value

C:\Program Files\rti_connext_dds-6.1.1 or C:\Program

Files\rti_connext_dds-6.1.2

Note: make sure that the path really matches the location where you installed the
software.

You will also need to add in the System PATH the full path to the DotNet and Python tools:

1. In the System variables section, look for the variable PATH and click on Edit

2. Click on New and add the following entry:

C:\Program Files\Epic

Games\UE_5.1\Engine\Binaries\ThirdParty\DotNet\6.0.302\wind

ows

3. Click on New once again and add the following entry:

C:\Program Files\Epic

Games\UE_5.1\Engine\Binaries\ThirdParty\Python3\Win64

Note: if your system already has an installation of Python, be sure to move this item to
appear in the PATH before any other installation of Python. This can be done with the
Move Up button in the path editing window.

Make sure that the paths really match the location where you installed the software. In order
to test that both tools work correctly:

1. Click on the Windows Start menu and type the word command so that it shows

Command Prompt and click on it.

2. In the command prompt, type dotnet and press enter. It should display a brief help on

the usage of the tool.

3. In the command prompt, type python -–version and press enter. It should display

the version of the tool, which was 3.9.7 as of this writing.

4. Keep this window open, we will need it later.

6

Creating the Unreal Engine project
In order to create a functional project in the shortest time possible, we will take advantage of
the nice Vehicle template that comes with Unreal Engine 5:

1. Open the Epic Games launcher.

2. Click on the Launch Unreal Engine 5.1.1 or 5.2.0 button (in the upper right corner of the

launcher). This will open the Unreal Editor and close the Launcher. Note that when the

editor is launched, there may be some setup delay due to compiling shaders, etc.

3. Click on GAMES and select Vehicle.

4. Leave the Project Location with the default value. Fill in the required details on the

right-hand side as:

○ Target Platform: Desktop

○ Quality Preset: Scalable

○ Starter Content: unchecked

○ Raytracing: unchecked

○ Project Name: Vehicle1

Click on Create to continue.

5. The project automatically opens in the Unreal Editor. Note that if certain

software/hardware dependencies are not found, they may be flagged when the editor

7

opens using a dialog box, such as:

Note also that some of these warnings are about the performance capabilities of your

system, but the applications will still work correctly.

6. To check that everything works as expected, click on the green Play button on the upper

side, then click once in the middle on the screen, and finally try to drive the car using the

arrow keys. Use the Escape key to finish your test drive.

The project is created as a Blueprint, but we need to convert it into a C++ project because we
are going to add C++ code later.

8

To force the conversion into a C++ project:

1. Click on Tools > New C++ Class

2. Click on the All Classes tab.

3. Select Object and click on Next.

4. Leave the name of the class with the default value and click on Create Class

5. At this point the project has been converted. It displays the following message:

Project now includes sources, please close the editor and

build from your IDE.

Click on OK, but do not close the Unreal Editor yet!

6. Next it displays the following message:

Successfully added class 'MyObject', however you must

recompile the 'Vehicle1' module before it will appear in

the Content Browser. Would you like to edit the code now?

9

Click on No. Again, do not close the Unreal Editor yet since we are going to use it just
below

Installing the Unreal Engine plugin for RTI Connext

There are two different methods to install the plugin. If possible, use the first method to
download it and install it from the marketplace. Use the second method to install it manually
only if you need to test a custom version that has been delivered to you.

Installation from the Unreal Engine marketplace

1. Click on Edit > Plugins

2. In the search box, type the word simplified so that it shows Simplified Real Time

Data Sharing and click on it

3. It displays a message asking for confirmation to enable the plugin. Click on Yes

4. At this point, the plugin has been installed in

C:\Users\myuser\Documents\Unreal

Projects\Vehicle1\Plugins\ConnextPlugin

5. Close the Unreal Editor

Manual installation

1. Close the Unreal Editor before using this method.

2. Open a file explorer and go to C:\Users\myuser\Documents\Unreal

Projects\Vehicle1

3. Create a folder named Plugins

4. Copy the Simplified_Real_Time_Data_Sharing_v1.1.zip file that has

been delivered to you into folder C:\Users\myuser\Documents\Unreal

Projects\Vehicle1\Plugins

5. Unzip the file. It will automatically create the folder

Simplified_Real_Time_Data_Sharing_v1.1

6. Delete the zip file and rename the folder to ConnextPlugin

10

Generating the C++ source code

You can define the data types in XML, then use a code generator to automatically create the
C++ source code that you need to incorporate in the Unreal Engine project.

In this tutorial, we are using the CarInfo.xml which contains a data type with three fields:

● coordinates: the 3D coordinates of the car in the Unreal Engine world

● speed: the speed of the car in mph

● id: the unique identifier of the car

In order to generate the C++ source code, follow the steps below:

1. Using the command prompt that you had opened before, type cd

C:\Users\myuser\Documents\Unreal

Projects\Vehicle1\Plugins\ConnextPlugin\Tools and press enter.

2. Type python generator_tags.py -xml ..\Config\CarInfo.xml -c

CarInfo -p Vehicle1 -v 5 and press enter.

11

-xml: indicates the path of the XML file
-c: class name that you want to use in the Unreal Engine project for that data type
-p: indicates the Unreal Engine project name
-v: indicates the Unreal Engine version, Unreal Engine 5 in this case

3. At this point, the CarInfo.cpp and CarInfo.h files have been generated. Copy

them into folder C:\Users\myuser\Documents\Unreal

Projects\Vehicle1\Source\Vehicle1

4. In the same folder, edit the file Vehicle1.Build.cs. In line 11, add

“ConnextPlugin” and “RTIConnextLibrary” right before “Core”:

PublicDependencyModuleNames.AddRange(new string[] {

"ConnextPlugin", "RTIConnextLibrary", “Core”, …

5. Using a file explorer, go to folder C:\Users\myuser\Documents\Unreal

Projects\Vehicle1. Right click on the file Vehicle1.uproject and select

Generate Visual Studio project files. It creates the .vs folder.

12

Compiling the Unreal Engine project

We already have everything necessary to compile the project:

1. Using a file explorer, go to folder C:\Users\myuser\Documents\Unreal

Projects\Vehicle1

2. Double click on the Vehicle1.sln file to open the project in Visual Studio

3. In the dropdown boxes in the upper side, select Development Editor and Local

Windows Debugger. Then click on the green Play button to launch the build.

Note: If you get the following error message: “Unable to instantiate module:
'ConnextPlugin': System.ArguementNullException: Value cannot be null. (Parameter
'path1')” make sure that the path in the NDDSHOME environment variable is correct (see
section Environment variables above).

When you are compiling for the first time, it may take a while. When it is finished, it will
automatically open the project in the Unreal Editor.

In case that this does not happen, look for any compilation errors in Visual Studio’s output box.

13

Publishing real-time information on the databus

1. Click on the Blueprint icon on the upper toolbar and select Open Level Blueprint

2. It shows an example which includes two of the typical events that every developer will

need to implement:

○ Event BeginPlay: it executes just once at startup.

○ Event Tick: it executes periodically and you can specify how often

3. Right click on the Execute Console Command node and delete it, since we will not need

it.

You can adjust the zoom level using your mouse wheel, and you can drag the work area while
keeping your mouse right button pressed.

Event BeginPlay

This event requires 4 nodes that we are going to create next.

14

Follow the steps below:

1. Right click in an empty space in the work area and type Create RTIConnext

DataWriter in the search box until it shows the element that we need; click on it to

create a new node. This function is in charge of creating the DDS DataWriter entity

together with the DDS participant if it is not already created. The information used by

the function comes from both the parameters and the DDS xml.

2. Fill in the required details:

○ Domain Id: indicate the domain where all your RTI Connext applications will be

running so that they can communicate with each other; type 10

○ Qos: file which contains the quality of service parameters for the

communication, and the entities, topic, types definition; they are in the same file

where we had defined the data types above, type CarInfo.xml

○ Participant Name: Name of the participant to use with its corresponding library;

type ParticipantLibrary::DomainParticipant

○ Writer Name: Name of the DataWriter with its corresponding Publisher from the

xml, which writes CarInfo data type that we had defined above; type

CarPublisher::CarInfoDataWriter

3. Connect the Event BeginPlay node with the Create RTIConnext DataWriter node.

15

4. Right click in the work area and type Construct object from class in the

search box; click on it to create a new node.

5. Click in the dropdown and search for the class created early.

○ Class: CarInfo

6. Connect the Create RTIConnext DataWriter node with the Construct Car Info node. Also

connect the Return Value pin with the Outer pin.

7. This object initialization/creation is necessary because the plugin does not know

beforehand the objects that we have imported. Once the object is instantiated you can

use its functions.

16

8. Promote the new object to a variable so it is easier to use inside the Blueprint. In the

Construct Car Info node, right click on Return Value and select Promote to Variable.

9. It opens a Details window on the right hand side. Fill in the required details:

○ Variable Name: CarInfoObj

○ Variable Type: Car Info

10. Draw a line starting from the output of the node that we just created and ending in an

empty space in the work area. Type SetConnextRef in the search box; click on it to

create a new node.

11. Connect the last two nodes that we have created. Also connect the Return Value pin (of

the Create RTIConnext DataWriter element) with the ConnextRef pin.

17

Event Tick

This event requires 10 nodes that we are going to create next.

Follow the steps below:

1. Right click in the work area to open the search box, and ensure that the Context

Sensitive option is unchecked. Now type Write CarInfoData Sample in the

search box. Click on it to create a new node. This unreal function is in charge of writing

the data to the dds databus using the type defined in the xml file, and the writer

declared in the Event BeginPlay.

18

2. Right click in the work area and type Get CarInfo Obj in the search box; click on it

to create a new node.

3. Connect the CarInfo Obj node with the Target pin. Also connect the Event Tick node

with the Write CarInfoData Sample node.

4. Next, we will create the Unreal struct (UStruct) equivalents of the two data types that

we had in the XML file: Position and CarInfoData. We will use them to write data

to the Connext DDS databus.

Right click in the work area and type Make Position in the search box; click on it to
create the element.

5. Right click in the work area and type Make CarInfoData in the search box; click on

it to create the element.

6. Fill in the required CarInfoData details:

○ Id: Car1

19

7. Connect the Position pin with the Coordinates pin. Also connect the MyObject pin with

the CarInfoData pin.

8. Right click in the work area and type Get Player Pawn in the search box; click on it

to create the element.

9. Right click in the work area and type Get Actor Location in the search box; click

on it to create the element.

10. Right click in the work area and type Break Vector in the search box; click on it to

create the element.

11. Connect the Return Value pin (of the Get Player Pawn node) with the Target pin. Also

connect the Return Value pin (of the Get Actor Location node) with the In Vec pin.

20

12. Next, to join the nodes that we had created before with these last ones, connect the X,

Y and Z pins.

13. Right click in the work area and type Get Velocity in the search box; click on it to

create the element.

14. Right click in the work area and type Vector Length in the search box; click on it to

create the element.

15. Right click in the work area and type Multiply in the search box; click on it to create

the element.

16. Make the following Connections:

○ The Return Value pin (of the Get Velocity node) with the A pin.

○ The Return Value pin (of the Vector Length node) with the Multiply node.

○ The Multiply node with the Speed pin.

17. Edit the second multiplication factor to be: 0.035 (conversion from cm/s to Km/h)

The resulting diagram should look like this:

21

18. Connect the Get Player Pawn node with the Get Velocity node.

19. Click on File > Compile

20. Click on File > Save All and close the Blueprint editor

21. Back to the Unreal Editor, click on the Play button to run the project. This

VehicleExample should now be exporting position and speed using RTI Connext!

22. Click on Output Log at the bottom of the screen and take a quick look at the last few

lines to make sure that there were no errors during the startup

For future sessions you will no longer need to start the project from Visual Studio. You can do
this directly from the Library tab of the Epic Games launcher, simply by double-clicking on
Vehicle1.

22

Subscribing to receive real-time information from the databus

The VehicleExample is now publishing its speed and position data to a DDS databus using RTI
Connext. This data is available for subscription by other Connext applications, and you can
quickly verify and visualize the data using the RTI ‘Admin Console’ utility that comes with RTI
Connext, which can be run from the ‘Tools’ tab of the RTI Launcher. The following steps show
how to view the published vehicle data using Admin Console:

1. Make sure that the Unreal Engine project is running.

2. Open the RTI Launcher and click on the Tools tab.

3. Click on Admin Console

23

4. A few seconds after the Admin Console opens, it will automatically refresh the tree on

the left panel and show the Domain 10 element. Unfold it and you will see the

CarData element.

5. Admin Console has 2 viewing modes: Administration and Data Visualization, which are

selectable in the upper-right corner of the application. Ensure Data Visualization mode is

selected by clicking on the eye-shaped icon:

6. Click on the ‘CarData’ element under the ‘Domain 10’ entry in the ‘DDS Logical View’ tab

in the upper left area of Admin Console. In the center viewspace, a tab for ‘10: CarData’

will open, with a button to subscribe to this topic. Press this button.

24

7. A ‘Create Subscription’ dialog box will appear. Press ‘OK’.

Admin console is now subscribed to and displaying the data from the CarData topic.

Note: The <0,0> coordinate is right in the center of the circuit, so it is normal to have
negative values.

8. Split your screen in two halves, so that you can see the Unreal Editor on the left-hand

side and the Admin Console on the right hand side

9. Drive the car and see how the values change in real time!

	Introduction
	Prerequisites
	Installing the prerequisites
	Unreal Engine
	RTI Connext
	Microsoft Visual Studio
	Environment variables

	Creating the Unreal Engine project
	Installing the Unreal Engine plugin for RTI Connext
	Installation from the Unreal Engine marketplace
	Manual installation

	Generating the C++ source code
	Compiling the Unreal Engine project
	Publishing real-time information on the databus
	Event BeginPlay
	Event Tick

	Subscribing to receive real-time information from the databus

