Application portability across
RTOSs and connection media

<Written by> Terry Wright,

RTI </W>

Middleware for embedded systems is beginning to
make an impact on the embedded space.

ODAY'S EMBEDDED devices are
more connected than ever before. Indeed,
it's hard to conceive of a device that does
not require connection capabilities in

today’s world. There is a plethora of connection
mechanisms, from the ubiquitous Ethernet and
serial connections, to USB, Wi-Fi and fabric
technologies. RTOS vendors deliver an essential
service to developers by providing an efficient
and productive environment for system design
and integration. As well as providing an opti-
mized platform for single node application
development, the modern RTOS environment
must integrate the huge range of device drivers
and protocol stacks needed to meet increasingly
complex distributed system requirements, and
also facilitate hardware to software integration.
What has changed in recent year's is that
system developers now frequently have to deal
with applications which must span multiple con-
nected nodes; they also have to run across mul-
tiple hardware transport mechanisms connecting
those nodes, and even across multiple different
0S's, from the deeply embedded RTOS through
RT Linux and up into the enterprise space where
standard Unix and Windows systems are run-
ning. This is where middleware solutions are
needed, providing the simplifying model of a sin-
gle APi that spans multiple 0S's and CPU types.
Much as in the enterprise space, where mid-
dleware has been a key application enabler for
many years, the embedded device space is now
recognizing its increasing importance to cost effec-
tive application development and deployment.

Open standard
Data Distribution Services (DDS) is an embed-
ded middleware solution that delivers common
data distribution capabilities for almost any con-
nection mechanism and RTOS or enterprise OS,
but tuned to the real-time performance and
memory requirements of what are, after all,
highly demanding embedded devices and sys-
tems. Even better, the DDS mechanism is a pub-
lished open standard developed and supported
by the Object Management Group (OMG), which
is already being adopted by a number of embed-
ded software developers and vendors.

Of course there is more to developing

embedded devices than just putting the compo-
nents together; embedded systems designers
need to manage the available resources, be it
the amount of work the CPU can be expected to
do or the amount of memory available and
required. Embedded devices are usually expect-
ed to operate 24/7 without failure, and some
safety critical systems need to have built in
redundancy and automatic failover.

Effective Data Distribution middleware must
also cater for real-time requirements. How is task-

real time diagnostic tools available
(Stethoscope, MemoryScope, ProfileScope
,CoverageScope and TraceScope) so their expe-
rience in the real-time environment is widely
acknowledged. Such experience, coupled with
their long-standing involvement in Publish-
Subscribe middleware and the drive for open
standards, motivated RTI to chair the OMG stan-
dardization committee for the DDS specification.

RTI designed their implementation of the
DDS specification (NDDS4.0) to be RTOS-friend-

&€& Developers now frequently have to deal with
applications which span multiple connected nodes 'y

ing controlled, how is the task priority set in Data
Distribution middleware and how is the task stack
size determined? How is the memory required by
the middleware for data buffering allocated? How
is data delivered? What overheads on the trans-
port bandwidth does the data distribution method
imply? All these questions and more must be con-
sidered hy system designers.

The DDS standard (DDS 1.0) was released in
2005 and details a Data Distribution APl using
the Publish-Subscribe data distribution para-
digm, as opposed to the more widely known
Client-Server paradigm. DDS provides for a Peer
to Peer, loosely coupled network of connected
devices with no single point of failure. Best
Effort or Reliable data delivery semantics and
automatic discovery of DDS nodes facilitates a
“self-healing” network. Asynchronous notifica-
tion of the data arrival and early detection of
failing nodes are a few of the many features
available within' the DDS specification.
Application-fevel security validation can also be
achieved using DDS features.

Vendor support

There are already a number of software vendors
who have decided to provide support this new
standard, Real Time Innovations (RTI) being one
of them. RTl have a long history in working with
Real Time Systems and RTOS vendors. Wind
River recently purchased the RTI tools division
which developed some of the most widely used

ly by providing support for standard RTOS offer-
ings popular in today's heterogeneous networks;
notably VxWorks from Wind River, Integrity from
Greenhills and LynxOS from LynuxWorks and
more recently QNX.

Fine Control

Quality of Service (QoS) settings within NDDS pro-
vide the fine control over system resources that
system designers demand, such as NDDS task pri-
orities, and NDDS task stack types and sizes.
"Ahead-of-time” memory allocation for data
buffers, no mallocs at run time, network redundan-
¢y and multiple concurrent transports are all stan-
dard supported features, in addition to the QoS
built in to the DDS specification that handles auto-
matic failover and data delivery semantics. RTI's
DDS implementation features a pluggable trans-
port mechanism for NDDS that provides the nec-
essary abstraction for application developers who
need to move data over any transport. e.g
Ethemet, VME backplanes, PCl Express, Shared
Memary or indeed StarFabric transports.

The Open DDS middleware standard, com-
bined with RTI's NDDS implementation features
and extensive RTOS support delivers an open
standards based solution to the most demanding
and complex of distributed system development
today. <End/>

www.rti.com/resources.html
\ www.omg.org/technology/

