
Product Advancements
for Scaling and Securing IIoT Systems

Erin McManus
PRINCIPAL ENGINEER

Fernando Crespo Sanchez
PRODUCT ARCHITECT

Outline

Wide Area Network
Connectivity

New scalable and secure
solution for Wide Area
Network connectivity
including 5G and other
cellular networks

Health Management

Advancements to bring
better observability into
Connext distributed
systems

Scalability

New features and
improvements to scale
to thousands of
endpoints

Accessibility

Language bindings and
API advancements

©2020 Real-Time Innovations, Inc. Confidential.

COMING SOON IN 2021

Wide Area Network
Connectivity

Connect from anywhere

©2020 Real-Time Innovations, Inc. Confidential.

©2020 Real-Time Innovations, Inc. Confidential.

Vehicle at the Edge

INTELLIGENT LOGGING
AND ANALYTICS

Cloud

ANALYTICS & ML, STORE LOGGING,
SERVICE DELIVERY

Remote Development &
Operations

MULTI-VEHICLE MONITORING, ASSIST &
CONTROL, UPDATES, HMI

Secure Connext Databus

Use Cases: Remote Device Management, Monitoring,
Analytics and Assistance

WAN Environments Present Unique Challenges

SCALABILITY
The number of endpoints running in a WAN
environment can be orders of magnitude bigger than
the endpoints running in a closed LAN-based system.

ROAMING AND CONNECTIVITY ACROSS
DIVERSE NETWORKS

Devices can roam between different
networks, including cellular networks,

changing addresses and connectivity
conditions

SECURITY
WAN environments are susceptible to more
cyber-attacks as data traverse public
networks and infrastructure

PERFORMANCE
Large variations in latency and bandwidth
availability make communication unreliable
for performance-sensitive applications

©2020 Real-Time Innovations, Inc. Confidential.

Challenge: Maintain Bidirectional Connectivity While
Moving Across Network Boundaries

Cellular Public Wi-FiHome Wi-Fi

Connext Databus

©2020 Real-Time Innovations, Inc. Confidential.

FEATURE DESCRIPTION

Underlying IP
Transports

UDP (Connext also works with TCP)

NAT Traversal Facilitates peer-to-peer connections,
including external-internal and internal-
internal asymmetric

Network Transitions Handles changes of IP addresses while
roaming

Delivery Controls Many options to control communication
reliability and speed (Reliable, Partially
Reliable, Best Effort)

FEATURE DESCRIPTION

Peer Discovery Ability to discover endpoints

Signaling and
Negotiation

Exchange of capabilities and candidate
addresses

Interoperable with
RTI Discovery
Service (CDS)

Discovery at large scale, where both
endpoints are behind Cone NATs; Simplified
directory service that facilitates endpoint
discovery

Connext DDS WAN Connectivity Solution

Core

Endpoint Discovery

©2020 Real-Time Innovations, Inc. Confidential.

FEATURE DESCRIPTION

Stream Multiplex Handles multiple streams within a
connection to avoid head-of-line (HOL)
blocking problems that limit performance

Flow Control Manages the rate of transmission based on
endpoint and network conditions to
minimize data losses

Built-in Data
Compression

Compresses user data to save bandwidth

Bonding
(Post 6.1.0)

Combining two or more network
connections to send data in an intelligent
way that allows the end user to utilize the
combined bandwidth in the most efficient
way.

FEATURE DESCRIPTION

Authentication Verify the identity of the endpoints
exchanging data

Access control Per Connection, and fine-grained per Data
Stream

Cryptography Encryption and decryption, hashing, digital
signatures, etc.

Connext DDS WAN Connectivity Solution
Performance and Scalability

Security and Privacy

©2020 Real-Time Innovations, Inc. Confidential.

Connext 6.1.0 WAN Connectivity Solution

©2020 Real-Time Innovations, Inc. Confidential.

(Cloud) Discovery
Service

Facilitates endpoint
discovery and NAT
traversal process

Real-time WAN
Transport

UDP-based transport
supporting NAT
traversal & network
roaming

WAN Connectivity Solution

Seamlessly and reliably share data
across WANs, including cellular
networks, without compromising
security

No need to integrate other technologies or security technologies

Single Programming Model

No API Changes

Data Center

WAN Deployment Scenario: Edge to Cloud

©2020 Real-Time Innovations, Inc. Confidential.

Vehicle
Real-Time WAN Transport

Routing
Service

LAN Transport

NAT

Real-Time WAN Transport

Routing
Service

LAN Transport

Cloud
Cloud Discovery

Service

Real-Time WAN Transport

Any kind of
NAT

Publicly
reachable

Publicly
reachable

WAN

Data
Center

<participant_qos>

<transport_builtin>

<mask>UDPv4_WAN</mask>

</transport_builtin>

<discovery>

<initial_peers>

rtps@udpv4_wan://216.58.194.174:7400

</initial_peers>

</discovery>

</participant_qos>

Cloud
<cloud_discovery_service name="CdsWanUdp">

<transport>

<element>

<alias>builtin.udpv4_wan</alias>

<receive_port>7400</receive_port>

<property>

<element>

<name>

dds.transport.UDPv4.builtin.public_address

</name>

<value>216.58.194.174</value>

</element>

</property>

</element>

</transport>

</cloud_discovery_service>

Vehicle

<participant_qos>

<transport_builtin>

<mask>UDPv4_WAN</mask>

</transport_builtin>

<discovery>

<initial_peers>

rtps@udpv4_wan://216.58.194.174:7400

</initial_peers>

</discovery>

</participant_qos>

WAN Deployment Scenario: Edge to Cloud

©2020 Real-Time Innovations, Inc. Confidential.

LAN Transport

Routing
Service

Real-Time WAN Transport NAT

Real-Time WAN Transport

Routing
Service

LAN Transport

Cloud Discovery
Service (CDS)

Real-Time WAN Transport

WAN

Discovery Service
reachable at
216.58.194.174:7400

Routing Service
reachable at
216.60.200.177:
5800

CDS address

Public UDP port

CDS address

WAN

WAN Deployment Scenario: Peer-to-Peer Edge to
Edge

©2020 Real-Time Innovations, Inc. Confidential.

Video Conference Client Video Conference Client

Cloud

Real-Time WAN Transport

Cloud Discovery
Service

Connext App

Real-Time WAN Transport

Connext App

Real-Time WAN Transport
NAT NAT

Only Cone
NATs

Only Cone
NATs

Video Conference Client “B”

WAN Deployment Scenario: Relayed Edge to Edge

©2020 Real-Time Innovations, Inc. Confidential.

Video Conference Client “A” Video Conference Client “C”

Cloud

Real-Time WAN Transport

Routing
Service

Cloud

Real-Time WAN Transport

Cloud Discovery
Service

Connext App

Real-Time WAN Transport

WAN

Connext App

Real-Time WAN Transport

Connext App

Real-Time WAN Transport
NAT NAT NAT

Any kind of
NAT

1. Client ‘A’ video
samples sent to RS

2. Client ‘A’ video
samples received by RS

3. RS relays video
samples from Client ‘A’
to other Clients

1

2

3

3. Clients ‘B’ and ‘C’
receive video samples
from Client ‘A’ from RS

4
4

© 2 0 1 9 R e a l -T i m e I n n o v a t i o n s , I n c . C o n fi d e n t i a l .

Performance: TCP WAN vs UDP WAN over Wi-Fi

Continuous Health Management

Bringing Better Observability and Faster Problem Resolution into Connext DDS

©2020 Real-Time Innovations, Inc. Confidential.

Health Management Activities

Resolution

Solve issues and restoring
the system into service with
minimal impact on service
availability.

Non Intrusive
Health Monitoring
and Alerting

Provide real-time visibility
into the system behavior to
assess functionality and
alert about potential issues

Non intrusive

Diagnosis

Debug or isolate issues to
root cause analysis

Observability
and

Controllability

Observability Challenge 1: Problem

©2020 Real-Time Innovations, Inc. Confidential.

Routing
Service

DATABUS DATABUS

Camera: 1 Camera: 2

Camera: 1Viewer

Camera 2 data
is missing

Routing
Service

• Health Issue: Viewer does not
receive information from Camera

• Known Information:
– Platform. Camera platform

for camera 1 and 2 is the
same (hardware and
software)

– Online. Camera 2 system can
be pinged so it is online

– Logs. Logs don’t indicate any
failure

– Inconsistent behavior.
Viewer received information
in the past from both
cameras

DATABUS

Observability Challenge 1: Root Cause

©2020 Real-Time Innovations, Inc. Confidential.

Routing
Service

DATABUS DATABUS

Camera: 1 Camera: 2

Camera: 1Viewer

Camera 2 data
is missing

Routing
Service

DATABUS

11:00 11:10 Source timestamps

Clock Synchronization Issue:
System is configured to use destination
order by SOURCE timestamp and Connext
DDS has a protection mechanism in which
the data published by an application is
ignored if published into the future.

11:00

Observability Challenge 1: 5.3.1 Diagnosis

©2020 Real-Time Innovations, Inc. Confidential.

Routing
Service

DATABUS DATABUS

Camera: 1 Camera: 2

Camera: 1Viewer

Camera 2 data
is missing

Routing
Service

DATABUS

11:00 11:10 Source timestamps

11:00

• To determine where the data was
lost we ran Wireshark in Viewer
first, and then in Routing Service

•The Data was received by Routing
Service but somehow was not
propagated to the viewer

•Why?. Not obvious. Is it lost on
the middleware stack? on the
socket buffers?

•Finally we realized the
source timestamp of the incoming
packets was 10 minutes ahead of
expected

2-3 days across multiple
teams to identify root cause
in a moderately complex
system

Observability Challenge 1: 6.1.0 Diagnosis

©2020 Real-Time Innovations, Inc. Confidential.

Routing
Service

DATABUS DATABUS

Camera: 1 Camera: 2

Camera: 1Viewer

Camera 2 data
is missing

Routing
Service

DATABUS

11:00 11:10 Source timestamps

11:00

•Warning log message and metrics
generated by Routing Service
indicate that it dropped samples
because their source timestamp
was in the future

•Warning message received and
visualized by Admin Console< 1 hour to #solved

New Observability Capabilities

©2020 Real-Time Innovations, Inc. Confidential.

Available in upcoming 6.1.0 release

Print Format Example

Timestamp BIT_TIMESTAMP [2020-10-15 00:38:55.168092]

Thread
Name

BIT_THREAD_ID U000000010e0ad5c0_

Activity
Context

BIT_ACTIVITY_CONTEXT [0x01018087,0xDC43F9E2,0xF22EE887:0x80000003{E=DW,T=HelloWorld,C=HelloWorld,D=0}|WRITE]

File and
Line

BIT_LOCATION_FILELINE Writer History Driver.c:731

Function
Name

BIT_LOCATION_METHOD PRESWriterHistoryDriver_addWrite

Backtrace BIT_BACKTRACE Backtrace:
#4 MyType_publisher 0x00000001058538e8 WriterHistoryMemoryPlugin_addSample + 2104
#5 MyType_publisher 0x000000010566ff78 PRESWriterHistoryDriver_addWrite + 3576
#6 MyType_publisher 0x00000001056c048c PRESPsWriter_writeInternal + 9820

Logging Improvements

©2020 Real-Time Innovations, Inc. Confidential.

Rich and configurable logging format

Connext 6.1

Connext 6.0

Connext 5
and earlier

• Activity Context
• Backtrace

• File name
• Line number

• Function Name
• Timestamp
• Thread Name

Logging Improvements
New activity context associated with log messages including
information to identify the source of the message: Topic, Type, GUID,
etc.

©2020 Real-Time Innovations, Inc. Confidential.

5.3.1 (Before)

WriterHistoryMemoryPlugin_addSample:out of order
PRESWriterHistoryDriver_addWrite:!timestamp order
PRESPsWriter_writeInternal:!timestamp order

6.1.0

[0x0101D82C,0x034CEB6D,0xC6A44AA8:0x80000003{E=DW,T=HelloWorld,C=HelloWorld,D=0}|WRITE]
WriterHistoryMemoryPlugin_addSample:out of order
[0x0101D82C,0x034CEB6D,0xC6A44AA8:0x80000003{E=DW,T=HelloWorld,C=HelloWorld,D=0}|WRITE]
PRESWriterHistoryDriver_addWrite:!timestamp order in topic 'HelloWorld'
[0x0101D82C,0x034CEB6D,0xC6A44AA8:0x80000003{E=DW,T=HelloWorld,C=HelloWorld,D=0}|WRITE]
PRESPsWriter_writeInternal:!timestamp order

Activity context identifies the source (Topic, Type, GUID, etc)

Logging Improvements

• Built-in backtraces help diagnose problems

• Automatically enabled for precondition or fatal errors

©2020 Real-Time Innovations, Inc. Confidential.

Backtrace:
#4 MyType_publisher 0x00000001058538e8 WriterHistoryMemoryPlugin_addSample + 2104
#5 MyType_publisher 0x000000010566ff78 PRESWriterHistoryDriver_addWrite + 3576
#6 MyType_publisher 0x00000001056c048c PRESPsWriter_writeInternal + 9820
#7 MyType_publisher 0x00000001051f5d80 DDS_DataWriter_write_w_timestamp_untyped_generalI + 2384
#8 MyType_publisher 0x0000000104f99bcb HelloWorldDataWriter_write_w_timestamp + 75
#9 MyType_publisher 0x0000000104f93713 publisher_main + 915
#10 MyType_publisher 0x0000000104f93903 main + 99
#11 libdyld.dylib 0x00007fff64ea83d5 start + 1
#12 ??? 0x0000000000000001 0x0 + 1

[2020-10-15 00:38:55.165457] U000000010e0ad5c0_
[0x01018087,0xDC43F9E2,0xF22EE887:0x80000003{K=DW,T=HelloWorld,Y=HelloWorld,D=0}|WRITE]
Mx16:Memory.c:7433:WriterHistoryMemoryPlugin_addSample:RTI0x2161002:out of order

Monitoring Improvements: Instance Metrics

©2020 Real-Time Innovations, Inc. Confidential.

● Customer question without a clear answer in a
running system:

“How many patients are admitted, how many are
discharged, is the system working as designed?

DDS Translation

“How many instances are registered, how many are
disposed, is the system working as designed?

Monitoring Improvements: Instance Metrics

©2020 Real-Time Innovations, Inc. Confidential.

struct DDS_DataWriterCacheStatus {

...

DDS_LongLong sample_count_peak;

DDS_LongLong sample_count;

DDS_LongLong alive_instance_count;

DDS_LongLong alive_instance_count_peak;

DDS_LongLong disposed_instance_count;

DDS_LongLong disposed_instance_count_peak;

DDS_LongLong unregistered_instance_count;

DDS_LongLong unregistered_instance_count_peak;

};

struct DDS_DataReaderCacheStatus {

...

DDS_LongLong alive_instance_count;

DDS_LongLong alive_instance_count_peak;

DDS_LongLong no_writers_instance_count;

DDS_LongLong no_writers_instance_count_peak;

DDS_LongLong disposed_instance_count;

DDS_LongLong disposed_instance_count_peak;

DDS_LongLong detached_instance_count;

DDS_LongLong detached_instance_count_peak;

};

● In 6.1.0, the user will be able to answer this question by
inspecting instance metrics.

● Also, available in Monitor UI.

Monitoring Improvements: Other Metrics

©2020 Real-Time Innovations, Inc. Confidential.

● DataWriterProtocolStatus and
DataReaderProtocolStatus extended to include metrics
related to fragmented data.

● DataReaderCacheStatus and DataWriterCacheStatus
extended to provide information about all samples
(relevant and not relevant) dropped by Connext DDS.

“Why am I not receiving data?

Built-in Enhanced Network Capture

©2020 Real-Time Innovations, Inc. Confidential.

Limitations capturing traffic with Wireshark

● Capturing is usually restricted to users with root privileges
● Wireshark and tcpdump are often not available in production or

deployed embedded targets
● Wireshark cannot capture traffic over shared memory
● Not very useful when encryption is enabled

Wireshark is widely used at development time
to capture and analyze RTPS packet traces

Connext 6.1.0 release resolves capturing
limitations to help with the debugging process

Capture inbound and/or outbound network traffic from multiple
Domain Participants

● No need to have root access
● Available for all platforms
● Available for all transports including shared memory, TCP, UDP,

etc
● Generates PCAP files that can be analyzed with Wireshark
● Security friendly: RTPS packets decryption

Built-in Enhanced Network Capture

©2020 Real-Time Innovations, Inc. Confidential.

Built-in Enhanced Network Capture

• Programmatic API

©2020 Real-Time Innovations, Inc. Confidential.

rti::util::network_capture::enable();

rti::util::network_capture::start(participant, "MyCapture.pcap");

rti::util::network_capture::stop(participant);

rti::util::network_capture::disable();

Built-in Enhanced Network Capture

©2020 Real-Time Innovations, Inc. Confidential.

Heap Monitoring

• Heap monitoring was introduced in Connext 6 to monitor
memory allocations and debug unexpected memory
growth

• Typical problem that can be debugged with heap
monitoring:

“Creating (and destroying) DataReaders is causing
memory growth in our application. … The growth seems
to be in native space, as java heap remains consistent.”

©2020 Real-Time Innovations, Inc. Confidential.

Heap Analysis

There is a 16 byte repeated non-pool allocation of a structure with type
DDS_SqlTypeSupportGlobalUnion

“Creating (and destroying)
DataReaders is causing memory
growth in our application. … The

growth seems to be in native space,
as java heap remains consistent.”

“Customer was creating both,
DataReaders and

ContentFilteredTopics, but only
deleting the DataReaders

©2020 Real-Time Innovations, Inc. Confidential.

Heap Analysis

Snapshot analysis is complicated. It usually requires
sending snapshots to RTI

©2020 Real-Time Innovations, Inc. Confidential.

Heap Analyzer
A cmd line tool for heap snapshot analysis

● Facilitates memory growth analysis
● Enables user debugging

Heap Analyzer

©2020 Real-Time Innovations, Inc. Confidential.

Scalability

Meet the changing needs of IIoT systems in the future

©2020 Real-Time Innovations, Inc. Confidential.

Scalability

CPU

Memory Bandwidth

The What and Why of Scalability

Allowing You to build
systems that continue to
perform as your resource
needs evolve and grow

Scalability

Bandwidth: User Data Compression

Pre-6.1.0:
• Limited Bandwidth Transport

Plugin Add-on
• Compress with each send
6.1.0:
• No Additional Libraries

needed
• 3 Built-in Compression

Algorithms: ZLib, BZip2, LZ4
• Compress once, send n times

struct DDS_CompressionSettings_t {

DDS_CompressionIdMask compression_ids;

DDS_UnsignedLong writer_compression_level;

DDS_Long writer_compression_threshold;

};

struct DDS_DataRepresentationQosPolicy {

...

struct DDS_CompressionSettings_t compression_settings;
};

Bandwidth: Compression Performance

Bandwidth: Decoupling Reliability and Durability

Problems:
● There was previously no way to have strict-reliability for live data and a limited

sample history for late-joiners
● Even if you do not require strict-reliability, there was no way to separate the

reliability window from the late-joiner windows
Pre-6.1.0:

– Both configured with a single depth parameter in HistoryQosPolicy

©2017 Real-Time Innovations,
Inc.

Problem: Replacing Unacknowledged Samples

History.depth

1

DataWriter

DataReader

1

1

©2017 Real-Time Innovations,
Inc.

History.depth

2

DataWriter

2

1

DataReader

Problem: Replacing Unacknowledged Samples

©2017 Real-Time Innovations,
Inc.

History.depth

3

DataWriter

3

31

The DataReader never receives 2

Late-Joining DataReader

3

3

DataReader

Problem: Replacing Unacknowledged Samples

©2017 Real-Time Innovations,
Inc.

History.kind = KEEP_ALL

1

DataWriter

1

1

DataReader

Problem: Too many durable samples

©2017 Real-Time Innovations,
Inc.

History.kind = KEEP_ALL

2

DataWriter

1

2

1 2

DataReader

Problem: Too many durable samples

©2017 Real-Time Innovations,
Inc.

History.kind = KEEP_ALL

DataWriter

3

1 2

321

3

DataReader

Problem: Too many durable samples

©2017 Real-Time Innovations,
Inc.

History.kind = KEEP_ALL

3

DataWriter

21

2 31

Late-Joining DataReader

1 2 3

3

History.depth

Wasted Bandwidth

DataReader

Problem: Too many durable samples

Bandwidth: Decoupling Reliability and Durability

6.1.0: New DurabilityQosPolicy.writer_depth QoS
– Reliability window (KEEP_LAST) ⇒ HistoryQos.depth
– Durability window ⇒ DurabilityQos.writer_depth

©2017 Real-Time Innovations,
Inc.

Durability.writer_dept
h

1

DataWriter

1

1

Solution: Decouple Reliability and Durability Depths

History.depth

DataReader

©2017 Real-Time Innovations,
Inc.

2

DataWriter

2

1
History.depth

Durability.writer_dept
h

DataReader

Solution: Decouple Reliability and Durability Depths

©2017 Real-Time Innovations,
Inc.

3

DataWriter

3

31

Late-Joining DataReader

3

3

2

2

2
History.depth

Durability.writer_dept
h

DataReader

Solution: Decouple Reliability and Durability Depths

Memory: DataReader Instance Replacement Policy

Bound the resources consumed by
your applications while supporting
dynamic and unbounded sets of
data

enum DataReaderInstanceRemovalKind {
NO_INSTANCE_REMOVAL,
EMPTY_INSTANCE_REMOVAL,
FULLY_PROCESSED_INSTANCE_REMOVAL,
ANY_INSTANCE_REMOVAL

};

struct DataReaderResourceLimitsInstanceReplacementSettings {

DataReaderInstanceRemovalKind alive_instance_replacement;

DataReaderInstanceRemovalKind no_writers_instance_replacement;

DataReaderInstanceRemovalKind disposed_instance_replacement;
};

Accessibility

Access Connext from a variety of development environments and languages

©2020 Real-Time Innovations, Inc. Confidential.

New and Improved Language Bindings

Fully redesign, modern, multi-
platform .NET API

New experimental Python API

New RPC for IDL interfaces.
C++11 improvements

New .NET API

Preview available @ https://www.nuget.org/packages/Rti.ConnextDds/

New fully redesigned, OMG-standard, .NET 5
compatible C# API

Compatibility
• Built for .NET Standard 2.0 & compatible with
.NET 5, .NET Core, Unity, .NET Framework
• Runs on Linux, macOS, Windows…
• Deployed with Nuget
• OMG-standard IDL mapping

API
• Fully redesigned with .NET best-practices,
naming conventions, & idioms.
• Generics
• Entities are IDisposable
• Standard collection interfaces
• Status updates and Conditions use events
• Immutable types
• OMG standardization in progress

.NET

New Python API (experimental)

Available now @ https://github.com/rticommunity/connextdds-py
Read about it @ https://www.rti.com/blog/introducing-the-rti-python-api

Full access to Connext DDS from Python
Python-friendly design built on the Modern C++
API

Full access to Connext DDS features:
• Dynamic Data
• Built-in types
• DDS Entities in code and XML
• DDS QoS in code and XML
• Content Filters
• Built-in discovery Topics
• Status updates
• Listeners
• Wait Sets
• Conditions

PYTHON

https://github.com/rticommunity/connextdds-py

New RPC for IDL interfaces (experimental)

CarControl.idl

CarControl_client.cxx
(generated by rtiddsgen)

CarControl_service.cxx
(generated by rtiddsgen)

Coming soon for C++11

DATABUS

• Instance management
– Instances can now be disposed and unregistered
– Subscriptions can look up disposed keys

• Dynamic Library Support for pluggable RTI components
– Monitoring
– Security

• JavaScript: Node 12 support
– Support for Node 14 coming later

Connector improvements (py, js)

Try a full version
of Connext DDS

for 30 days
TRY CONNEXT AT

RTI.COM/DOWNLOADS

Includes resources to get
you up and running fast

©2020 Real-Time Innovations, Inc. Confidential.

Stay Connected

rti.com
Free trial of Connext DDS

@rti_software

@rti_software

rtisoftware

rti.com/blog

connextpodcast

©2020 Real-Time Innovations, Inc. Confidential.

