

Product Advancements for Scaling and Securing IIoT Systems

Erin McManus PRINCIPAL ENGINEER Fernando Crespo Sanchez PRODUCT ARCHITECT

Outline

Wide Area Network Connectivity

Health Management

Scalability

Accessibility

New scalable and secure solution for Wide Area Network connectivity including 5G and other cellular networks Advancements to bring better observability into Connext distributed systems New features and improvements to scale to thousands of endpoints Language bindings and API advancements

COMING SOON IN 2021

Wide Area Network Connectivity

Connect from anywhere

©2020 Real-Time Innovations, Inc. Confidential

Use Cases: Remote Device Management, Monitoring, Analytics and Assistance

WAN Environments Present Unique Challenges

PERFORMANCE

Large variations in latency and bandwidth availability make communication unreliable for performance-sensitive applications

SECURITY

WAN environments are susceptible to more cyber-attacks as data traverse public networks and infrastructure

SCALABILITY

The number of endpoints running in a WAN environment can be orders of magnitude bigger than the endpoints running in a closed LAN-based system.

ROAMING AND CONNECTIVITY ACROSS DIVERSE NETWORKS

Devices can roam between different networks, including cellular networks, changing addresses and connectivity conditions

Challenge: Maintain Bidirectional Connectivity While Moving Across Network Boundaries

© 2020 Real-Time Innovations, Inc. Confidential.

Connext DDS WAN Connectivity Solution

Core

FEATURE	DESCRIPTION
Underlying IP Transports	UDP (Connext also works with TCP)
NAT Traversal	Facilitates peer-to-peer connections, including external-internal and internal- internal asymmetric
Network Transitions	Handles changes of IP addresses while roaming
Delivery Controls	Many options to control communication reliability and speed (Reliable, Partially Reliable, Best Effort)

Endpoint Discovery

FEATURE	DESCRIPTION
Peer Discovery	Ability to discover endpoints
Signaling and Negotiation	Exchange of capabilities and candidate addresses
Interoperable with RTI Discovery Service (CDS)	Discovery at large scale, where both endpoints are behind Cone NATs; Simplified directory service that facilitates endpoint discovery

Connext DDS WAN Connectivity Solution

Performance and Scalability

FEATURE	DESCRIPTION
Stream Multiplex	Handles multiple streams within a connection to avoid head-of-line (HOL) blocking problems that limit performance
Flow Control	Manages the rate of transmission based on endpoint and network conditions to minimize data losses
Built-in Data Compression	Compresses user data to save bandwidth
Bonding (Post 6.1.0)	Combining two or more network connections to send data in an intelligent way that allows the end user to utilize the combined bandwidth in the most efficient way.

Security and Privacy

FEATURE	DESCRIPTION
Authentication	Verify the identity of the endpoints exchanging data
Access control	Per Connection, and fine-grained per Data Stream
Cryptography	Encryption and decryption, hashing, digital signatures, etc.

Connext 6.1.0 WAN Connectivity Solution

Real-time WAN Transport

UDP-based transport supporting NAT traversal & network roaming

+ Eacilitate

Facilitates endpoint discovery and NAT traversal process

(Cloud) Discovery

WAN Connectivity Solution

Seamlessly and reliably share data across WANs, including cellular networks, without compromising security

No need to integrate other technologies or security technologies

Single Programming Model

No API Changes

WAN Deployment Scenario: Edge to Cloud

©2020 Real-Time Innovations, Inc. Confidential.

WAN Deployment Scenario: Edge to Cloud

WAN Deployment Scenario: Peer-to-Peer Edge to Edge

WAN Deployment Scenario: Relayed Edge to Edge

©2020 Real-Time Innovations, Inc. Confidential.

Performance: TCP WAN vs UDP WAN over Wi-Fi

Continuous Health Management

Bringing Better **Observability** and Faster Problem **Resolution** into Connext DDS

©2020 Real-Time Innovations, Inc. Confidential.

Health Management Activities

Resolution

Solve issues and restoring the system into service with minimal impact on service availability.

Observability and Controllability

Non Intrusive Health Monitoring and Alerting

Provide real-time visibility into the system behavior to assess functionality and alert about potential issues

Non intrusive

Diagnosis

Debug or isolate issues to root cause analysis

Observability Challenge 1: Problem

• Health Issue: Viewer does not receive information from Camera

Known Information:

- Platform. Camera platform for camera 1 and 2 is the same (hardware and software)
- Online. Camera 2 system can be pinged so it is online
- Logs don't indicate any failure
- Inconsistent behavior.
 Viewer received information in the past from both cameras

Observability Challenge 1: Root Cause

Clock Synchronization Issue:

System is configured to use destination order by **SOURCE** timestamp and Connext DDS has a protection mechanism in which the data published by an application is ignored if published into the future.

Observability Challenge 1: 5.3.1 Diagnosis

Observability Challenge 1: 6.1.0 Diagnosis

New Observability Capabilities

Available in upcoming 6.1.0 release

©2020 Real-Time Innovations, Inc. Confidential.

New **activity context** associated with log messages including information to identify the **source** of the message: Topic, Type, GUID, etc.

5.3.1 (Before)

WriterHistoryMemoryPlugin_addSample:out of order PRESWriterHistoryDriver_addWrite:!timestamp order PRESPsWriter_writeInternal:!timestamp order

6.1.0 Activity context identifies the source (Topic, Type, GUID, etc)

[0x0101D82C,0x034CEB6D,0xC6A44AA8:0x8000003{E=DW,T=HelloWorld,C=HelloWorld,D=0}|WRITE]
WriterHistoryMemoryPlugin_addSample:out of order
[0x0101D82C,0x034CEB6D,0xC6A44AA8:0x8000003{E=DW,T=HelloWorld,C=HelloWorld,D=0}|WRITE]
PRESWriterHistoryDriver_addWrite:!timestamp order in topic 'HelloWorld'
[0x0101D82C,0x034CEB6D,0xC6A44AA8:0x8000003{E=DW,T=HelloWorld,C=HelloWorld,D=0}|WRITE]
PRESPsWriter writeInternal:!timestamp order

- Built-in **backtraces** help diagnose problems
- Automatically enabled for precondition or fatal errors

Backtrace:

#4	MyType_publisher	0x0000001058538e8 WriterHistoryMemoryPlugin_addSample + 2104
#5	MyType_publisher	0x00000010566ff78 PRESWriterHistoryDriver_addWrite + 3576
#6	MyType_publisher	0x0000001056c048c PRESPsWriter_writeInternal + 9820
#7	MyType_publisher	0x00000001051f5d80 DDS_DataWriter_write_w_timestamp_untyped_generall + 2384
#8	MyType_publisher	0x000000104f99bcb HelloWorldDataWriter_write_w_timestamp + 75
#9	MyType_publisher	0x000000104f93713
#10	MyType_publisher	0x000000104f93903 main + 99
#11	libdyld.dylib	0x00007fff64ea83d5 start + 1
#12	???	0x00000000000001 0x0 + 1

[2020-10-15 00:38:55.165457] U000000010e0ad5c0_

[0x01018087,0xDC43F9E2,0xF22EE887:0x80000003{K=DW,T=HelloWorld,Y=HelloWorld,D=0}|WRITE]

Mx16:Memory.c:7433:WriterHistoryMemoryPlugin_addSample:RTI0x2161002:out of order

Monitoring Improvements: Instance Metrics

• Customer question without a clear answer in a running system:

"How many patients are admitted, how many are discharged, is the system working as designed?

"How many instances are registered, how many are disposed, is the system working as designed?

Monitoring Improvements: Instance Metrics

- In 6.1.0, the user will be able to answer this question by inspecting instance metrics.
- Also, available in Monitor UI.

struct DDS_DataReaderCacheStatus

. . .

DDS_LongLong alive_instance_count; DDS_LongLong alive_instance_count_peak; DDS_LongLong no_writers_instance_count; DDS_LongLong no_writers_instance_count_peak; DDS_LongLong disposed_instance_count; DDS_LongLong disposed_instance_count_peak; DDS_LongLong detached_instance_count; DDS_LongLong detached_instance_count_peak;

struct DDS_DataWriterCacheStatus

• • •

- DDS_LongLong sample_count_peak;
- DDS_LongLong sample_count;
- DDS_LongLong alive_instance_count;
- DDS LongLong alive instance count peak;
- DDS_LongLong disposed_instance_count;
- DDS_LongLong disposed_instance_count_peak;
- DDS_LongLong unregistered_instance_count;
- DDS_LongLong unregistered_instance_count_peak;

};

"Why am I not receiving data?

 DataWriterProtocolStatus and DataReaderProtocolStatus extended to include metrics related to fragmented data.

 DataReaderCacheStatus and DataWriterCacheStatus extended to provide information about all samples (relevant and not relevant) dropped by Connext DDS.

Wireshark is widely used at development time to **capture** and **analyze** RTPS packet traces

Limitations capturing traffic with Wireshark

- Capturing is usually restricted to users with root privileges
- Wireshark and tcpdump are often not available in production or deployed embedded targets
- Wireshark cannot capture traffic over shared memory
- Not very useful when encryption is enabled

Connext 6.1.0 release resolves capturing limitations to help with the debugging process

Capture inbound and/or outbound network traffic from multiple Domain Participants

- No need to have root access
- Available for all platforms
- Available for all transports including shared memory, TCP, UDP, etc
- Generates PCAP files that can be analyzed with Wireshark
- Security friendly: RTPS packets decryption

• Programmatic API

rti::util::network_capture::enable();

rti::util::network_capture::start(participant, "MyCapture.pcap");

rti::util::network capture::stop(participant);

rti::util::network_capture::disable();

Apply a display fil	ter <ctrl-></ctrl->				
o. Source	Dectiontion				
o. Source	Destination	Protocol	Length	Transport class	Info
152 8033	8044	RTPS	270	SHMEM	INCO DST. ACKNACK
153 8033	8044	RTPS	562	SHMEM	INFO DST INFO TS DATA(V)
154 8033	8044	RTPS	270	SHMEM	INFO DST ACKNACK
155 8044	8033	RTPS	290	SHMEM	TNEO DST HEAPTBEAT
156 8033	8044	DTDS	250	SHMEM	TNEO DST. ACKNACK
157 8044	8033	DTDS	286	SHMEM	TNEO DST. ACKNACK
158 8033	8044	DTDS	254	SHMEM	TNEO DET HEADTREAT
150 8033	8044	DTDS	234	SUMEN	INFO_DST, HEARTDEAT
160 9022	8044	DTDC	254	CUMEM	INFO_DST, GAF
161 9022	8044	DTDS	254	CUMEN	INFO_IS, DATA
162 8033	8044	DTDC	254	SHMEM	INFO_IS, DATA
102 0033	0044	RIPS	304	SHIER	INFO_TS, DATA
Deel Time Dub	lich Cubcoribe)	(introl Tro	acacat Cill		22.0) Date (0044.57442)
<pre>Real-Time Pub: Magic: RTPS > Protocol ve vendorId: 0 > guidPrefix: > Default por > submessageI > submessageI > submessageI</pre>	ection: INBOUND lish-Subscribe w rsion: 2.3 1.01 (Real-Time dcb9c7407ecfa4; t mapping: doma: d: SRTPS_PREFIX d: SEC_BODY (0x; d: SPTPS_PREFIX	Vire Protoco Innovation 282f677824 inId=171798 (0x33) 30) & (0x34)	ol s, Inc 3, partici	Connext DDS) pantIdx=68, n	ature=UNICAST_METATRAFFIC
Real-Time Pub * RTPS Securi + RTPS leve * Submessag * submessag + Flags octet 0000 0ctet + reade	1 SKIPS_POSITI lish-SubScribe W ty decoding le level sageId: DATA (0x s: 0x05, Data pr tsToNextHeader: 0000 0000 0000 ts to inline QoS erEntityId: ENTI	15) esent, End: 56 = Extra fl: : 16 TYID UNKNOU	ol (process ianness bit ags: 0x0000	sed) t 0 0000)	
Real-Time Pub RTPS Securi RTPS leve Submessag Submessag Submess Flag: 0000 0ctet Preade Write write enu enu	d. skirs_rostrin lish-Subscribe w ty decoding de level sageId: DATA (0x s: 0x05, Data pr tsToNextHeader: 0000 0000 0000 ts to inline QoS erEntityId: ENTI erEntityId: ENTI erEntityId: 0x86 erSeqNumber: 224 alizedData capsulation kino capsulation opti	15) esent, End: 56 = Extra fl: 16 TYID_UNKNOM 0000003 (App d: CDR_LE (Lons: 0x000	ol (process ianness bin ags: 0x0000 wN (0x00000 plication-(0x0001) 0	sed) t 0 0000) defined writer	r (no key): 0x800000)
Real-Time Pub • RTPS Securi • RTPS leve • Submessag • submessag • submessa • Flag: 0000 0 Octet • reade • write • write • enu enu se	d. skips_postpl lish-Subscribe w ty decoding elevel sageId: DATA (0x s: 0x05, Data pr tsToNextHeader: 0000 0000 0000 ts to inline QoS erEntityId: ENTI erEntityId: ENTI erEntityId: 0x86 erSeqNumber: 224 alizedData capsulation opti rializedData: 1	15) esent, End: 56 = Extra fl: :: 16 TYID_UNKNOI 0000003 (App :: 1: CDR_LE (Lons: 0x000	ol (process ianness bit ags: 0x0000 wN (0x00000 plication-(0x0001) 0 66666f2057	sed) t 0 0000) defined writer 6f726c6420536	r (no key): 0x800000) 5637572652028323233290000000

Heap Monitoring

 Heap monitoring was introduced in Connext 6 to monitor memory allocations and debug unexpected memory growth

• Typical problem that can be debugged with heap monitoring:

"Creating (and destroying) DataReaders is causing memory growth in our application. ... The growth seems to be in native space, as java heap remains consistent."

Heap Analysis

29552618, 1546989736, 120, MALLOC, 0, 0, n/a, n/a, RTIOsapiHeap_allocateBufferAligned, unsigned char 29552619, 1546989736, 32768, MALLOC, 0, 0, n/a, n/a, RTIOsapiHeap_allocateBufferAligned, unsigned char 29552620, 1546989736, 54, MALLOC, 0, 0, n/a, n/a, RTIOsapiHeap_allocateString, char 29552622, 1546989736, 16, MALLOC, 0, 0, n/a, n/a, RTIOsapiHeap_allocateStructure, struct DDS_SqlTypeSupportGlobalUnionMap 29554224, 1546989736, 16, MALLOC, 0, 0, n/a, n/a, RTIOsapiHeap_allocateBufferAligned, unsigned char 29554225, 1546989736, 40, MALLOC, 0, 0, n/a, n/a, RTIOsapiHeap_allocateBufferAligned, unsigned char 29554226, 1546989736, 136, MALLOC, 0, 0, n/a, n/a, RTIOsapiHeap_allocateBufferAligned, unsigned char 29554226, 1546989736, 136, MALLOC, 0, 0, n/a, n/a, RTIOsapiHeap_allocateBufferAligned, unsigned char 29554227, 1546989736, 136, MALLOC, 0, 0, n/a, n/a, RTIOsapiHeap_allocateBufferAligned, unsigned char 29554228, 1546989736, 136, MALLOC, 0, 0, n/a, n/a, RTIOsapiHeap_allocateBufferAligned, unsigned char 29554228, 1546989736, 136, MALLOC, 0, 0, n/a, n/a, RTIOsapiHeap_allocateBufferAligned, unsigned char 29554228, 1546989736, 136, MALLOC, 0, 0, n/a, n/a, RTIOsapiHeap_allocateBufferAligned, unsigned char 29554228, 1546989736, 136, MALLOC, 0, 0, n/a, n/a, RTIOsapiHeap_allocateBufferAligned, unsigned char 29554228, 1546989736, 136, MALLOC, 0, 0, n/a, n/a, RTIOsapiHeap_allocateBufferAligned, unsigned char 29554228, 1546989736, 136, MALLOC, 0, 0, n/a, n/a, RTIOsapiHeap_allocateBufferAligned, unsigned char

There is a **16** byte repeated **non-pool** allocation of a **structure** with type **DDS_SqITypeSupportGlobalUnion**

29554234, 1546989736, 40, MALLOC, 0, 0, n/a, n/a, RTIOsapiHeap_allocateBufferAligned, unsigned char 29554235, 1546989736, 120, MALLOC, 0, 0, n/a, n/a, RTIOsapiHeap_allocateBufferAligned, unsigned char

"Creating (and destroying) DataReaders is causing memory growth in our application. ... The growth seems to be in native space, as java heap remains consistent." "Customer was creating both, DataReaders and ContentFilteredTopics, but only deleting the DataReaders

Heap Analysis

Problem

olution

Snapshot analysis is complicated. It usually requires sending snapshots to RTI

- Facilitates memory growth analysis
- Enables user debugging

Heap Analyzer

Scalability

Meet the changing needs of IIoT systems in the future

©2020 Real-Time Innovations, Inc. Confidential.

The What and Why of Scalability

Allowing You to build systems that continue to perform as your resource needs evolve and grow

Bandwidth: User Data Compression

Pre-6.1.0:

- Limited Bandwidth Transport Plugin Add-on
- Compress with each send

6.1.0:

- No Additional Libraries needed
- 3 Built-in Compression Algorithms: ZLib, BZip2, LZ4
- Compress once, send n times


```
struct DDS_CompressionSettings_t {
    DDS_CompressionIdMask compression_ids;
    DDS_UnsignedLong writer_compression_level;
    DDS_Long writer_compression_threshold;
};
struct DDS_DataRepresentationQosPolicy {
    ...
    struct DDS_CompressionSettings t compression_settings;
```

};

Bandwidth: Compression Performance

8000 No compression
 Lz4 (Level 5) 6000 Throughput (Mbps) 4000 2000 0 ! 100 1000 10000 100000 1000000 Length (Bytes)

Live Data Throughput in a 1Gbps Network (Logging data)

Bandwidth: Decoupling Reliability and Durability

Problems:

- There was previously no way to have strict-reliability for live data and a limited sample history for late-joiners
- Even if you do not require strict-reliability, there was no way to separate the reliability window from the late-joiner windows
- Pre-6.1.0:
 - Both configured with a single depth parameter in HistoryQosPolicy

Bandwidth: Decoupling Reliability and Durability

6.1.0: New DurabilityQosPolicy.writer_depth QoS

- − Reliability window (KEEP_LAST) ⇒ HistoryQos.depth
- − Durability window ⇒ DurabilityQos.writer_depth

Memory: DataReader Instance Replacement Policy

Bound the resources consumed by your applications while supporting dynamic and unbounded sets of data

enum DataReaderInstanceRemovalKind {

NO_INSTANCE_REMOVAL, EMPTY_INSTANCE_REMOVAL, FULLY_PROCESSED_INSTANCE_REMOVAL, ANY_INSTANCE_REMOVAL

};

};

struct DataReaderResourceLimitsInstanceReplacementSettings {

DataReaderInstanceRemovalKind alive_instance_replacement; DataReaderInstanceRemovalKind no_writers_instance_replacement; DataReaderInstanceRemovalKind disposed_instance_replacement;

Accessibility

Access Connext from a variety of development environments and languages

©2020 Real-Time Innovations, Inc. Confidential.

New and Improved Language Bindings

Fully redesign, modern, multiplatform .NET API

New RPC for IDL interfaces. C++11 improvements

New experimental Python API

New .NET API

.NET

New fully redesigned, OMG-standard, .NET 5 compatible C# API

Compatibility

• Built for **.NET Standard 2.0** & compatible with **.NET 5**, .NET Core, Unity, .NET Framework

• Runs on Linux, macOS, Windows...

• Deployed with Nuget

• OMG-standard IDL mapping

API

• Fully redesigned with .NET best-practices, naming conventions, & idioms.

• Generics

• Entities are IDisposable

• Standard collection interfaces

• Status updates and Conditions use **events**

• Immutable types

• OMG standardization in progress

using DomainParticipant participant =
 DomainParticipantFactory.Instance.CreateParticipant(domainId);

var provider = new QosProvider("hello_world.xml"); Topic<DynamicData> topic = participant.CreateTopic("Example HelloWorld", provider.GetType("HelloWorld"));

```
Subscriber subscriber = participant.CreateSubscriber();
DataReader<DynamicData> reader = subscriber.CreateDataReader(topic);
```

```
StatusCondition statusCondition = reader.StatusCondition;
statusCondition.EnabledStatuses = StatusMask.DataAvailable;
statusCondition.Triggered += condition =>
```

```
using var samples = reader.Take();
foreach (var sample in samples)
{
    Console.WriteLine($"Received: {sample}");
};
```

{

```
var waitset = new WaitSet();
waitset.AttachCondition(statusCondition);
waitset.Dispatch(Duration.FromSeconds(4));
```

Preview available @ https://www.nuget.org/packages/Rti.ConnextDds/

New Python API (experimental)

PYTHON

Full access to Connext DDS from Python Python-friendly design built on the Modern C++ API

Full access to Connext DDS features:

- Dynamic Data
- Built-in types
- DDS Entities in code and XML
- DDS QoS in code and XML
- Content Filters
- Built-in discovery Topics
- Status updates
- Listeners
- Wait Sets
- Conditions

with dds.DomainParticipant(domain_id) as participant: provider = dds.QosProvider(FILE) topic = dds.DynamicData.Topic(participant, "Example HelloWorld", provider.type("HelloWorld"))

subscriber = dds.Subscriber(participant)
reader = dds.DynamicData.DataReader(subscriber, topic)

status_condition = dds.StatusCondition(reader)
status_condition.enabled_statuses = dds.StatusMask.data_available()

```
samples_read = 0
def hander(_):
    nonlocal samples_read
    nonlocal reader
    samples_read += process_data(reader)
status_condition.handler(hander)
```

waitset = dds.WaitSet()
waitset += status_condition
while samples_read < sample_count:
 print("Hello World subscriber sleeping for 4 seconds...")
 waitset.dispatch(dds.Duration(4))</pre>

Available now @ <u>https://github.com/rticommunity/connextdds-py</u> Read about it @ https://www.rti.com/blog/introducing-the-rti-python-api

New RPC for IDL interfaces (experimental)

Connector improvements (py, js)

- Instance management
 - Instances can now be disposed and unregistered
 - Subscriptions can look up disposed keys

- Dynamic Library Support for pluggable RTI components
 - Monitoring
 - Security
- JavaScript: Node 12 support
 - Support for Node 14 coming later

Try a full version of Connext DDS for 30 days

TRY CONNEXT AT RTI.COM/DOWNLOADS

Includes resources to get you up and running fast

Stay Connected

rtisoftware

connextpodcast

rti.com/blog

