

A new RMW for RTI Connext DDS

Andrea Sorbini
SENIOR SOFTWARE ENGINEER

Presentation Agenda

• ROS
• RTI Connext DDS for ROS
• ROS + Connext

ROS

ROS

• Robot Operating System

• Open-source middleware for robotic applications
developed by Open Source Robotics Foundation (OSRF).
– Component-oriented (nodes).
– Topic-based pub/sub with typed messages (ROS IDL).
– Remote method invocation (clients/services).
– Official API language bindings: C++, Python.

• Version 2 adopted DDS as its default communication layer.
– Abstracted by a "middleware layer" (RMW) to support

alternative communication technologies.

ROS - Architecture

ROS Client API
Common Implementation

ROS Client API
Language Bindings

ROS Middleware Layer

ROS Node

RMW

• C API used by rcl to create middleware entities and to
access their services (e.g. message pub/sub).

• Implementation selected at runtime via environment
variable ${RMW_IMPLEMENTATION}.

• "Tier 1" implementations (Foxy release):
– RTI Connext DDS Professional (rmw_connext_cpp)

– eProsima FastRTPS (rmw_fastrtps_cpp)

– Eclipse Cyclone DDS (rmw_cyclonedds_cpp)

RTI Connext DDS for ROS

rmw_connext_cpp

• Current RMW implementation for RTI Connext DDS
Professional, developed by OSRF.
– The first RMW to be implemented for ROS2.

– RTI Connext DDS Micro not supported.

• Design choices cause suboptimal user experience.

– Bad performance due to extra memory allocations and copies
between ROS and DDS data representations.

– Mangling of DDS type names (e.g. "Foo.bar" -> "Foo_.bar_")
hinders out-of-the-box interoperability.

http://build.ros2.org/view/Eci/job/Eci__nightly-performance_ubuntu_bionic_amd64/plot/Performance%20One%20Process%20Test%20Results%20(multisize%20messages)/

• Two new RMWs developed and supported by RTI.
– rmw_connextdds
– rmw_connextddsmicro

• Resolves performance issues by allowing the middleware to
handle ROS messages without any transformation.

• Propagates types without name mangling.

• No Connext-specific code generation.

A new RMW for RTI Connext DDS

Differences between RMWs

• rmw_connextpro_cpp
– Propagates type information over DDS Discovery.
– Request/reply compliant with standard DDS RPC.

• rmw_connextmicro_cpp
– Static resource limits defined at compile-time.
– Custom request/reply implementation.
– Incomplete support for ROS node graph.
– Additional configuration required (via environment variables).

Improved RMW performance

• Initial results from a simple test
stressing throughput between a
ROS publisher and subscriber.

• Speedup vs old: 2.5x-6x

• Performance similar to other
RMWs.

Roadmap

• Repository available for evaluation on GitHub.
– Looking for feedback while completing testing and stabilization.

– Access enabled upon request (write to robotics@rti.com).

• Replace rmw_connext_cpp with rmw_connextdds_cpp
in upcoming ROS releases.
– Requires validation and adoption by OSRF.

– Target: Foxy patch release (TBD), Galactic (May 2021).

https://github.com/rticommunity/rmw_connextdds
mailto:robotics@rti.com

ROS + Connext

A ROS/Connext interoperability demo

• ROS applications can now easily interoperate with RTI
Connext DDS applications and RTI Connext DDS tools.

• Two simple Connext applications interact with turtlesim.
– Publish topic "rt/turtle1/cmd_vel" to move turtle.
– Subscribe to topic "rt/turtl1/pose" to detect turtle's position.

• Use ros-data-types repository to simplify development.

https://github.com/rticommunity/ros-data-types

RMW Installation

Clone RMW repository in a new overlay

mkdir -p ros2_connextdds/src/ros2 && cd ros2_connextdds

git clone -b foxy \
 https://github.com/rticommunity/rmw_connextdds.git src/ros2/rmw_connextdds

Configure environment for ROS (e.g. Foxy) and Connext

source /opt/ros/foxy/setup.bash

source ~/rti_connext_dds-6.0.1/resource/scripts/rtisetenv_x64Linux4gcc7.3.0.bash

export CONNEXTDDS_DIR=${NDDSHOME}

Build RMW packages and load them into environment

colcon build --symlink-install

source ~/ros2_connextdds/install/setup.bash

ros-data-types library

Clone, build, and install ros-data-types

git clone https://github.com/rticommunity/ros-data-types.git ros-data-types

NDDSHOME=${CONNEXTDDS_DIR} cmake -Hros-data-types -Bros-data-types/build \

 -DCMAKE_INSTALL_PREFIX=ros-data-types/install -DLANG=C

cmake --build ros-data-types/build -- install

export ROS_DATA_TYPES_DIR=$(pwd)/ros-data-types

• Collection of "standard" ROS data types in IDL format.

• Generates C++ (or C) interfaces for all types and links them
into a single library.

https://github.com/rticommunity/ros-data-types.git

Create a "workspace" directory for the example.

mkdir hello_turtle && cd hello_turtle

Generate a publisher for geometry_msgs/msg/Twist using the IDL from
the ros-data-types repository.

rtiddsgen -language C -example x64Linux4gcc7.3.0 -unboundedSupport \
 -d . -I ${ROS_DATA_TYPES_DIR} \
 ${ROS_DATA_TYPES_DIR}/geometry_msgs/msg/Twist.idl

Edit Twist_publisher.c to subscribe to:
- Register type with the correct name, and subscribe to correct topic.
- Set the fields of the published sample

vim Turtle_publisher.c

Create a CMakeLists.txt

vim CMakeLists.txt

Build the application

cmake -H. -Bbuild && cmake --build build

A simple turtle controller

Run and inspect

Select the RMW implementation

export RMW_IMPLEMENTATION=rmw_connextpro_cpp

Start the turtle simulator

ros2 run turtlesim turtlesim_node

Start the publisher to control
the turtle movements.

build/Twist_publisher

Use rtiadminconsole to monitor
the applications.

rtiadminconsole

Twist_publisher - Type and Topic

// Twist_publisher.c:42

#include "geometry_msgs/msg/Twist.h"

#include "geometry_msgs/msg/TwistSupport.h"

// Twist_publisher.c:118

type_name = "geometry_msgs::msg::dds_::Twist_";

retcode = geometry_msgs_msg_TwistTypeSupport_register_type(

 participant, type_name);

// Twist_publisher.c:130

topic = DDS_DomainParticipant_create_topic(

 participant, "rt/turtle1/cmd_vel",

 type_name, &DDS_TOPIC_QOS_DEFAULT,

 NULL /* listener */, DDS_STATUS_MASK_NONE);

Twist_publisher - Data publication

// Twist_publisher.c:94
struct DDS_Duration_t send_period = {0,500000000};

// Twist_publisher.c:178

double amount = (double)((rand()+1) % 5) * ((count%2)?1.0:-1.0);

instance->linear.x = amount;

instance->linear.y = amount;

instance->angular.z = (rand() % 2)? amount : 0;

cmake_minimum_required(VERSION 3.7)

project(hello_turtle C)

list(APPEND CMAKE_MODULE_PATH "$ENV{CONNEXTDDS_DIR}/resource/cmake")

set(CONNEXTDDS_DIR "$ENV{CONNEXTDDS_DIR}")

find_package(RTIConnextDDS "6.0.0" REQUIRED COMPONENTS core)

add_executable(Twist_publisher Twist_publisher.c)

target_link_libraries(Twist_publisher

 PRIVATE RTIConnextDDS::c_api $ENV{ROS_DATA_TYPES_DIR}/install/lib/libRosDataTypes.a)

target_include_directories(Twist_publisher

 PRIVATE ${CMAKE_CURRENT_SOURCE_DIR} $ENV{ROS_DATA_TYPES_DIR}/install/include)

if(CMAKE_SYSTEM_NAME MATCHES "Linux" AND CMAKE_C_COMPILER_ID MATCHES "GNU")

 set_target_properties(Twist_publisher PROPERTIES LINK_FLAGS -Wl,--no-as-needed)

endif()

CMakeLists.txt

Questions?

Thank you.

For any questions or feedback, and to request access to the GitHub repository,
please write to robotics@rti.com.

https://github.com/rticommunity/rmw_connextdds
mailto:robotics@rti.com

Try a full version
of Connext DDS

for 30 days

TRY CONNEXT AT
RTI.COM/DOWNLOADS

Includes resources to get
you up and running fast

©2020 Real-Time Innovations, Inc. Confidential.

Stay Connected

rti.com
Free trial of Connext DDS

@rti_software

@rti_software

rtisoftware

rti.com/blog

connextpodcast

©2020 Real-Time Innovations, Inc. Confidential.

