Leveraging DDS for a Medical IoT-Based Critical Care Ecosystem

PRESENTED BY
Matthew Grubis
OCTOBER 26 • 10:30AM PDT

Chief Engineer
GE Healthcare Patient Monitoring
matthew.grubis@med.ge.com
GE Healthcare – Life Care Solution
Wherever there is a patient

PATIENT MONITORING

ANESTHESIA

RESPIRATORY

DIAGNOSTIC CARDIOLOGY

MATERNAL / INFANT CARE
Patient Monitoring as Medical IoT

Patient-Centered Monitoring

Flexible & Scalable Infrastructure

Provider-Centered Insights

Wearables

Edge Compute

AI / Analytics

A safer and faster care pathway

Edison

- Unobtrusive
- Patient mobility
- Clinical flexibility

- High fidelity data
- Cyber security
- Interoperability

- Personalized
- Workflow oriented
- GE & Partner analytics
It’s not that patients suddenly deteriorate. It’s that caregivers suddenly notice.
Patient monitoring is more than a device connected to a patient that acquires physiological information and then processes that information to generate an alarm. A Patient Monitoring system includes many (often hundreds and sometimes thousands of) devices connected to patients who are geographically dispersed across a hospital campus. Data and processed information from each of these devices are communicated across the hospital ecosystem and are delivered to a variety of data sinks.
Patient monitoring is more than a device connected to a patient that acquires physiological information and processes that information generating alarms. A Patient Monitoring system includes many, often hundreds and sometimes thousands of devices connected to patients geographically dispersed across a hospital campus. Data and processed information from each of these devices are communicated across the hospital ecosystem and are delivered to a variety of data sinks.
Patient monitoring is more than a device connected to a patient that acquires physiological information and processes that information generating alarms. A Patient Monitoring system includes many, often hundreds and sometimes thousands of devices connected to patients geographically dispersed across a hospital campus. Data and processed information from each of these devices are communicated across the hospital ecosystem and are delivered to a variety of data sinks.
Patient monitoring is more than a device connected to a patient that acquires physiological information and processes that information generating alarms. A Patient Monitoring system includes many, often hundreds and sometimes thousands of devices connected to patients geographically dispersed across a hospital campus. Data and processed information from each of these devices are communicated across the hospital ecosystem and are delivered to a variety of data sinks.
Patient Monitoring

Viewing of Physiological Data

Alarming and Event Management

Patient Management

Device and System Management

Analytical Processing

Availability, Fault Tolerance, State Consistency
The Grand Challenge of a Patient Monitoring Ecosystem is that the state of the ecosystem is massively distributed, and is always expected to be in an inconsistent state, desiring a state of consistency.

A patient monitoring ecosystem is an eventually consistent system that is never truly consistent.
The Grand Challenge of a Patient Monitoring Ecosystem is that the state of the ecosystem is **massively distributed**, and is **always** expected to be in an **inconsistent** state, desiring a state of consistency.

Why is inconsistency expected?
Consider an **average** hospital with 200 patient monitors, 10 clinical units, and 40 central stations.

It is **expected** that if a 1) Monitor becomes disconnected during transport 2) An entire Unit disconnects from the rest of the hospital 3) A building is cut off from the Edge Platform 4) The Edge Platform fails;

The state of the device, the unit, the building can be **safely** changed while **disconnected**.

A patient monitoring ecosystem is an eventually consistent system that is never truly consistent.
The Grand Challenge of a Patient Monitoring Ecosystem is that the state of the ecosystem is **massively distributed**, and is **always** expected to be in an **inconsistent** state, desiring a state of consistency.

Why is inconsistency expected?
Consider an **average** hospital with 200 patient monitors, 10 clinical units, and 40 central stations.

It is **expected** that if a 1) Monitor becomes disconnected during transport 2) An entire Unit disconnects from the rest of the hospital 3) A building is cut off from the Edge Platform 4) The Edge Platform fails;

The state of the device, the unit, the building can be **safely** changed while **disconnected**.

Safe and expected state reconciliation:
Allowing disconnected state changes is simple, but as the elements of the system reconnect, the patient monitoring ecosystem must **reconcile** state safely, and reflect the clinical users’ intentions based on their practice of caregiving.

A patient monitoring ecosystem is an eventually consistent system that is never truly consistent.
PACU
Edge Compute
The Grand Challenge
The Grand Challenge
DDS in Patient Monitoring

The Data Distribution Service™ (DDS) standard was specifically designed for real-time, mission-critical applications to manage data-centric states across decentralized systems, in a scalable and secure manner.
The Data Distribution Service™ (DDS) standard was specifically designed for real-time, mission-critical applications to manage data-centric states across decentralized systems, in a scalable and secure manner.

- DDS is not “cloud centric”
DDS in Patient Monitoring

The Data Distribution Service™ (DDS) standard was specifically designed for real-time, mission-critical applications to manage data-centric states across decentralized systems, in a scalable and secure manner.

- DDS is not “cloud centric”
- Data state is exchanged at “wire-speed” with Quality of Service control
The Data Distribution Service™ (DDS) standard was specifically designed for real-time, mission-critical applications to manage data-centric states across decentralized systems, in a scalable and secure manner.

- DDS is not “cloud centric”
- Data state is exchanged at “wire-speed” with Quality of Service control
- There are no data-mastership concerns, just distributed state reconciliation
The Data Distribution Service™ (DDS) standard was specifically designed for real-time, mission-critical applications to manage data-centric states across decentralized systems, in a scalable and secure manner.

- DDS is not “cloud centric”
- Data state is exchanged at “wire-speed” with Quality of Service control
- There are no data-mastership concerns, just distributed state reconciliation
- Efficient communication leveraging DDS built-in “type system” (DDS-XTYPES)
The Data Distribution Service™ (DDS) standard was specifically designed for real-time, mission-critical applications to manage data-centric states across decentralized systems, in a scalable and secure manner.

- DDS is not “cloud centric”
- Data state is exchanged at “wire-speed” with Quality of Service control
- There are no data-mastership concerns, just distributed state reconciliation
- Efficient communication leveraging DDS built-in “type system” (DDS-XTYPES)
- On the wire compatibility with dynamic data model dynamic changes and evolution
DDS in Patient Monitoring

The Data Distribution Service™ (DDS) standard was specifically designed for real-time, mission-critical applications to manage data-centric states across decentralized systems, in a scalable and secure manner.

- DDS is not “cloud centric”
- Data state is exchanged at “wire-speed” with Quality of Service control
- There are no data-mastership concerns, just distributed state reconciliation
- Efficient communication leveraging DDS built-in “type system” (DDS-XTYPES)
- On the wire compatibility with dynamic data model dynamic changes and evolution
- Content aware filtering to drive further efficiency
The Data Distribution Service™ (DDS) standard was specifically designed for real-time, mission-critical applications to manage data-centric states across decentralized systems, in a scalable and secure manner.

- DDS is not “cloud centric”
- Data state is exchanged at “wire-speed” with Quality of Service control
- There are no data-mastership concerns, just distributed state reconciliation
- Efficient communication leveraging DDS built-in “type system” (DDS-XTYPES)
- On the wire compatibility with dynamic data model dynamic changes and evolution
- Content aware filtering to drive further efficiency
- Fully secure endpoint authentication and encryption built in
DDS in Patient Monitoring

The Data Distribution Service™ (DDS) standard was specifically designed for real-time, mission-critical applications to manage data-centric states across decentralized systems, in a scalable and secure manner.

- DDS is not “cloud centric”
- Data state is exchanged at “wire-speed” with Quality of Service control
- There are no data-mastership concerns, just distributed state reconciliation
- Efficient communication leveraging DDS built-in “type system” (DDS-XTYPES)
- On the wire compatibility with dynamic data model dynamic changes and evolution
- Content aware filtering to drive further efficiency
- Fully secure endpoint authentication and encryption built in
- Transport independent; the best transport is used for the communication link
DDS in Patient Monitoring

The Data Distribution Service™ (DDS) standard was specifically designed for real-time, mission-critical applications to manage data-centric states across decentralized systems, in a scalable and secure manner.

- DDS is not “cloud centric”
- Data state is exchanged at “wire-speed” with Quality of Service control
- There are no data-mastership concerns, just distributed state reconciliation
- Efficient communication leveraging DDS built-in “type system” (DDS-XTYPES)
- On the wire compatibility with dynamic data model dynamic changes and evolution
- Content aware filtering to drive further efficiency
- Fully secure endpoint authentication and encryption built in
- Transport independent; the best transport is used for the communication link
- Software defined domains and topics