®
rt' Your systems.
Working as one.

Technical Deep Dive:

Product Advancements for
Scaling And Securing lloT ol .
Systems SR

Connext’
2019

Fernando Crespo Sanchez

Product Architect, Real-Time Innovations

©2019 Real-Time Innovations, Inc

Outline

*|[loT Systems Characteristics

* Connext Platform

* Core Connectivity Platform Support
* Performance and Scalability
*Security

* Type System & Evolvability

*In the Works

©2019 Real-Time Innovations, Inc

lloT System Example: Patient Monitoring

* Large Systems

.
" ap — — Thousands of endpoints
— Hundreds of users

* Heterogeneous software/
hardware platforms

. ﬁ — OS, networking, middleware
Smart - . .
- e Different kinds of data
— — Large and small data
— Historical and real-time data

— Confidential and non-confidential
— Periodic and non periodic

* Interoperability across application

* Mobility

Nurses
Station . .
Decision

Support

©2019 Real-Time Innovations, Inc

NG e Y VD, WSRO, G Ny

&

AN, A

VS DR B R

-

2% :“‘\ ~ X .
‘!? _elnnova‘uons, Inc

Connext 6: Platform for Distributed System Connectivity

]

Connext DDS Secure

Designed for systems requiring robust, fine-

Connext DDS Professional

Connectivity software for developing and

integrating lloT systems. grained security.

| +ie) @M O B e8] M. m| 4

Code Data Data Data Recording System System System Database Web Spreadsheet 3rd Party
Generation Routing Persistence Queuing & Replay Administration Introspection Monitoring Integration Integration Integration Integrations

o E

Connext DDS Micro

Designed for resource-constrained systems.

Connext DDS Cert

Designed for safety-certifiable systems.

Connext DDS Professional and
Micro Alignment

Connext DDS Professional and Micro Alignment

* Wire interoperable

* Type System compatible

* DDS standard APl compatible
e Configuration compatible

Connext DDS % Connext DDS
Professional Micro

VR

DDS

v

©2019 Real-Time Innovations, Inc

Connext DDS Micro 3 New Features

* XML Application Creation

* Large Data (RTPS fragmentation)

e Batching on the DataReader side

e X-Types 1.2 (not including TypeObject)

e Shared Memory Transport

* RTI FlatData ™

e Zero Copy Transfer over Shared Memory
* DDS Security

©2019 Real-Time Innovations, Inc

Connext 6 Recording Service

Improved Data Recording

RTI provides tools and
documentation to support the
migration to new Recording
Service

@ 6.0.0
Connext 6 Recording Service improves \/

performance, scalability, simplifies configuration
and adds support for custom storage plugins

(©-°

R_ecord/RepIay — Based on Connext Routing Service

Recorder Replay

Replay Service XML Configuration

Recording Service XML Configuration

Routing Service Routing Service

DDS Database Database DDS
Input Output Input Output
Adapter Adapter Adapter Adapter

» » » »

©2019 Real-Time Innovations, Inc

Connext 6 Recording Service: New Functionality

-

(U

Patient Room Domain \

)

Pluggable
Data Transformation

©2019 Real-Time Innovations,

Inc

Performance

Throughput (Mbps) UDPv4 Reliable Keyed

256 1024

Connext 5.3.1 M Connext 6

Platform
Intel i7 6-core CPU
3.33GHz
12 GB RAM
CentOS Linux
1 Gb network

Connext 6 Recording Service - Summary

Connext 5.3 Recording

Connext 6 Recording Service

User Interface

Service

Recording Console

Admin Console (some limitations)

(every field in a column)

Content-Filtered Topics No Yes

File Rollover Yes Yes

Logging Yes Yes, with additional debugging aids
Use recorded QoS when replaying Yes, but Partition QoS only No

Deserialized data format SQLite default format JSON

(with support for arbitrary types)

Tagging time ranges No Yes

Remote Shell Yes No (supports shell in an example)
Security (Encryption) Yes Yes

Enterprise Integration Patterns Limited Yes Mn
Pluggable Storage No Yes

" &
I A% e
"
/ /" II' j’ ¥ YR -
/1)
F,/ ' l . ..
' ' .
PRI Wk S
: AR
. ’ e 8
’ . '
7) o 0
] ‘ ’
' P |
. » .
¢ .
. ’ .
. .
§ .
. . ’
. ’
.
: '
F /
: ‘ !
: [
p ‘.L) : ' "
v . ‘
ey :
p <
. .
f
!

i

> i

@/ered Architecture

LIS

Nurses
Station

Smart
Alarming

Patient
Monitor

IT Systems Databus

0~

(=)
[)
Recording Services D Mobile

Decision @
Support

Ward Databus

$ Cloud Server

Routing Service

GATEWAY

Infusion Pump

Patient Room, Operating Room or ICU Databus

Ventilator

Data Recording

©2019 Real-Time Innovations, Inc

Connext 6 Routing Service

Routing Service: Key Capabilities

-~

Data Transformation \

Technology mtegratlon (Adapters) \

5.

/ Scalable Data Forwarding (content \

filter propagation)

»

-~

Monitoring and Administration \

Data Transformation & Filtering

struct PatientVitals EU ({
long ID
string name;
long temperatureCelsius;
long pulseRate;

¥

Domain: Patients

ID=X12345
name=Rose;
temp=37.5;
pulseRate=66;

ID=X12345
name=Paul;
temp =37.5;
pulseRate=50;

4)

J

é¥>—> O

Adapter

Reader

11— o

Adapter
Reader

Data Transformation
Route

TRANSFORMATION

ﬁ ﬁ

Filtering & Isolation

Route

Y

Temperature > 38 C
=» OR pulseRate <55 =p
OR pulseRate > 120

Adapter

Writer

Adapter
Writer

struct PatientVitals US ({
long ID
string name;
long temperatureFarenheit;
long pulseRate;

¥

4 _)
Domain: Nursery

ID=X12345
name=Paul;
temp =37.5;
pulseRate=50;

- J

©2019 Real-Time Innovations, Inc

Sglable Data Forwarding: CFT Propagation ’) ?

Subscribes: { P1}
Subscribes: { P1 OR P3 }

Suk?sucl? rlbeispi l;l ORP3}

* AN Filtering occurs
O O at the source
Publishes: Publishes: . .
{P1, temp: 34.7 °C} {P2,temp:35.9°C} Subscribes: Subscribes:

{P3} {P1}

©2018 Real-Time Innovations, Inc

Routing Service Adapters '@%

Connext Applications

I

Routing

Plug-in
Adapters

Service

! ! !

rt

©2019 Real-Time Innovations, Inc

Connext 6 Routing Service

* Adds new capabilities for system integration and
scalability

— Routes with multiple forwarding paths
— Stateful Adapter and Processor APIs
— Scalable Monitoring and Administration

* Backwards compatible with previous generation

©2019 Real-Time Innovations, Inc

Architecture Basics

. ﬂ\lurse Station Room Domairx
/ Patient Room Domain \ Domain Route

Participant_1 Participant_2

-
-
-
-

Temp Route

©2019 Real-Time Innovations, Inc

Connext 6 Routing Service: General Architecture

Multiple participants in a
DomainRoute

)

Domain D1

—

Domain D2

Domain Route

Participant, Participant, - Participantp._;

Pluggable Processor to control Route operation

Multiple inputs and outputs in
a Route

)

Domain Dp

—

©2019 Real-Time Innovations, Inc

Previous Routing Service Solution: Complexity & Overhead

Domain O

Routing
Service

\ 4

‘ Sensor

0->1

\ 4

v

0<-2

\ 4

0->2

\ 4

Domain 2

vV V

-
Recording
Service

.

VY

0->1
Routing
Service

Domain 1

-
Web Integration
Service

-

©2019 Real-Time Innovations, Inc

Connext 6 Routing Service: Simple and High Performance

Routing
. Service
Domain O
0
->
Sensor 0->0 Recording
Service
N/
0
> Wen
Integration
Service
Viewer n _
0->1
> 0->0

Routing Domain 1

|

Service

Network Load — Reduced from 3 sample duplicates to 1
Router Memory - ~50% reduction
Discovery Time — ~50% reduction

©2019 Real-Time Innovations, Inc

SDK Updates: Processor and Adapter APIs
5.3 RS Connext 6 RS
Support

Gets notified of events
— Data on inputs
— Events (periodic, input/output enable, ...)

Flexible access to inputs/outputs
— Read/Take/Select from Inputs
— Write to Outputs

e (Callback transformation
— transform(input, output)

Enhanced execution control

* Executes based on — Arrival of data

— Arrival of data — Specified rate

— Route events

Production decoupled from consumption

©2019 Real-Time Innovations, Inc

Extended Support for Integration Patterns

Splitting
Aggregation
Content enrichment
Content filtering
Normalizer

Periodic action

Delayed action

©2019 Real-Time Innovations, Inc

Connext 6 Routing Service: Other features

* Enhanced Monitoring and Administration architecture
* Provides better scalability, flexibility and usability

* Improved logging

e Support for RTI FlatData ™ and Zero Copy Transfer over
Shared Memory

Routing Service Integration with Admin Console A

Routing Entitiesl DDS Entities ‘ Log ‘ Routing Information‘ Resource Charts

Q||| ® |2 Metrics ~ Statistics Configuration

~ || <auto_topic_route name="AllForward">
O bridge_domain_0_and_domain_1 <publish_with_original_info>true</publish_with_original_inf
'Ii' - - - </auto_topic_route>

D TwoWayDomainRoute

D Sessiont

| >} AllF J
Pause

© Resume
@ Enable
@ Disable
i © Delete

&Y AllForward@Square

1 P 6223984

16115/
62439 B/s

< >
O session2
| [AllBackward | Name State
v [RTI Routing Service] bridge_domain_O_and_domaino Started
v [Domain Route] TwoWayDomainRoute D started
[Connection] 1 N/A
&Y AllBackward@Circle [Connection]2 /A
v [Session] Session1 D Started
9 Processor 9 [Auto Route] AlIForward 9 Started
2 o 4 » 1 v [Route] AllForward@Square &Y Running
027 ps [Route Input] Input1 Enabled
[Processor] Processor N/A
[Route Output] Output1 Enabled
v [Session] Session2 D Started
[Auto Route] AllBackward D Started
v [Route] AllBackward@Circle & Running
[Route Input] Input1 Enabled
[Processor] Processor N/A
[Route Output] Output1 Enabled

©2019 Real-Time Innovations, Inc

Cloud Discovery Service and
Domain Tags

ﬂtial Peers In Networks Without Multicast

CDS
(running 192.168.1.2:5678)

Participant A Participant B Participant C
(running 192.168.2.1:5678) (running 192.168.3.1:5678) (running 192.168.4.1:5678)

rtps @Hdﬂ\‘/ﬁ’f/ /133_4@.;_.@;5678 rtps@g@gyﬁc{é&%@@ﬁ.llll:5678 rtps@v,@gvﬁrié&%g@lll .2:5678
udpv4://192.168.4.1, udpv4://192.168.4.1, udpv4://192.168.3.1,

ct

©2019 Real-Time Innovations, Inc

What is Cloud Discovery Service?

Cloud Discovery Service (CDS) is a mediator for the discovery process in
environments where multicast is not available.

CDS

Multicast-less participants DB ==

network

Participant A Participant C

Participant B

® (DS as a Participant announcement forwarder.
® Peer Participants only know about CDS in first instance
(initial_peers).

Cloud discovery traffic /

Peer-to-peer discovery /

©2019 Real-Time Innovations, Inc

Domain Tags

Participant Earﬁcipant announcement . _ » lgnored discovery
announcement (ignored) path path

e Configurable through DomainParticipant PropertyQos: dds.domain_participant.domain_tag

©2019 Real-Time Innovations, Inc

Domain Tags

A domain tag is a logical space within a domain. Domain tags are isolated from each other.

Participant A : Participant C Participant E |

Participant B Participant D Participant F

©2019 Real-Time Innovations, Inc

NG e Y VD, WSRO, G Ny

&

AN, A

VS DR B R

-

2% :“‘\ ~ X .
‘!? _elnnova‘uons, Inc

Large Data Streaming
Performance Improvements

Large Data Streaming Use Cases

Autonomous Driving Medical Imaging

~
=

. '’ -
1 L
|
N i
= s
—— "
= - S @i
1
ok
1
|
|
|

i i

©2019 Real-Time Innovations, Inc

Communication Latency Components

Middleware

Transport

Operational latency introduced Small Sample Latency
by the middleware to provide
functionality that otherwise
would have to be provided by the

- Middleware
application

Latency introduced by copying Copy
the sample content. This
includes, among other copies the Transport
serialization (marshaling) and
deserialization (unmarshalling)
copies.

Latency introduced by the
underlying transport and
networking infrastructure.

Large Sample Latency

Middleware

Transport

©2019 Real-Time Innovations, Inc

Large Data Streaming Problem: Copies

serialize fragmentation socket::send

—>-@

UDPv4

»O
—>@
—»0
!

socket::receive
® >0 reassemble deserialize
O > > >®
O >0

What is FlatData?

* Language Binding in which Wire Representation is equal to
Memory Representation

— Memory representation = Wire representation CDR v2

e Serialization and deserialization cost is zero

C/C++ sample

CDR buffer

Create & set sample

content

CDR buffer

Socket out

S

Socket out

Create & set sample

content

Socket in

Socket in

>

CDR buffer

C/C++ sample

Read sample

A4

CDR buffer

Read sample

FlatData over UDPv4

fragmentation socket::send

—
.

socket::receive

O) reassemble

O >0 »®
O 0

How to use FlatData

e Use an annotation in IDL

— Annotate types requiring FlatData
language binding with
@language binding() in IDL

— Special type plugin code generation

* No additional library needed

@language_binding(FLAT_DATA)
@final
struct Dimension {

uintle width;

uintlé height;

¥

@language_binding(FLAT_DATA)
@final
struct Image {
int64 timestamp;
Dimension dimension;
uint8 pixels[30000000];
}s

How to use FlatData

Publication Example (Modern C++)

// Get an image
Image *data = writer.extensions().get loan();

// Update timestamp and dimension
auto image = data->root();
image.timestamp(3000);

auto dimension = image.dimension();
dimension.width(100);
dimension.height(200);

// Get pointer to image buffer and populate it

auto pixels= image.pixels();

uint8 t *pixels ptr = rti::flat::plain_cast(pixels);
populate image pixels(pixels ptr);

// Write image
writer.write(*data);

@language_binding(FLAT_DATA)
@final
struct Dimension {

uintlée width;

uintl6é height;

}s

@language_binding(FLAT_DATA)
@final
struct Image {

int64 timestamp;

Dimension dimension;

uint8 pixels[30000000];

s

How to use FlatData

Subscription Example (Modern C++)

// Take
auto samples = rti::sub::valid data(reader.take());

for (const auto& sample : samples) {
// Copy timestamp, width, and height
auto image = sample.data().root();
int64 t ts = image.timestamp();
uintlée _t width = image.dimension().width();
uintlée_t height = image.dimension().height();

// Get a pointer to the image buffer
const uint8 t *pixels ptr =
rti::flat::plain_cast(image.pixels());

@language_binding(FLAT_DATA)
@final
struct Dimension {

uintlée width;

uintl6é height;

}s

@language_binding(FLAT_DATA)
@final
struct Image {

int64 timestamp;

Dimension dimension;

uint8 pixels[30000000];

s

FI_atData over UDPv4

fragmentation socket::send

socket::receive
®) reassemble
@ >0 »®
@ >0
Copy 3
Copy 2

©2019 Real-Time Innovations, Inc

Saving Copies when Using SHMEM

fragmentation + copy from SHMEM +
copy into SHMEM reassemble

‘ serialize I O X\}O/% deserialize »‘ Default
SHMEM

fragmentation + copy frem SHMEM +

copy.into SHMEM reassemble
‘\’O 7" FlatData
\>O/
SHMEM

DataWriter ‘ Zero Copy Transfer
DataReader Over SHMEM

SHMEM

How to use Zero Copy SHMEM Transfer

e Use an Annotation in IDL

— Annotate types with
@transfer_mode(SHMEM _REF) in IDL

— Only top level types need the
annotation

— Special type plugin code generation
— Type validation

* Link the application with optimized
SHMEM library

struct Dimension {
uintlé width;
uintlé height;

s

@transfer_mode (SHMEM_REF)
struct Image {
int64 timestamp;
Dimension dimension;
uint8 pixels[30000000];

¥

How to use Zero Copy SHMEM Transfer

Publication Example (C++)

// Get data
Image *data= writer->get_loan();

// Update sample

data->timestamp = ts;

data->dimension.width = width;
data->dimension.height = height;

populate pixels data(data->pixels, buffer, size);

// Write sample
retcode = imageWriter->write(*data, instance_h);

struct Dimension {
uintlé width;
uintlé height;

s

@transfer_mode (SHMEM_REF)
struct Image {
int64 timestamp;
Dimension dimension;
uint8 pixels[30000000];

¥

How to use Zero Copy SHMEM Transfer

Subscription Example (C++)

// Take

retcode = imageReader->take(data_seq, info_seq,
DDS LENGTH_UNLIMITED, sample state,
view state, instance_ state);

for (i = @; 1 < data_seqg.length(); ++i) {
if (info_seq[i].valid data) {
// Get and process sample
image = data_seq[i];

// Check sample consistency

is consistent = imageReader->is sample consistent(
image, info_seq[i]);

struct Dimension {
uintlé width;

uintlé height;
}s

@transfer_mode (SHMEM_REF)
struct Image {
int64 timestamp;
Dimension dimension;

uint8 pixels[30000000];
}s

FlatData/Optimized SHMEM Summary

(4 copies)

+ (send + fragment) + (send + fragment)
+ receive

+ reassemble + + reassemble +

__________________________________ 4—————————————————————-
|
|
@language_binding (send + fragment) : (send + fragment)
(FLAT_DATA) . :
+ receive |
+ reassemble | + reassemble
|
__________________________________ s

Zero Copy Transfer (0 copies)

Over SHMEM
@transfer_mode
(SHMEM_REF)
@language_binding
(FLAT_DATA)

FlatData Performance Across Nodes

25 MB Sample Latency (usec) Platform
Intel i7 6-core CPU

3.33GHz

12 GB RAM
CentOS Linux
10 Gb network

25 MB sample copy
time = 3370 usec

Plain M FlatData

UDPv4 10 Gpbs

Large Data Performance Single Node

100000 Platform

Intel i7 6-core CPU
3.33GHz

12 GB RAM
CentOS Linux

LATENCY (USEC)

Optimized shared
memory latency
constant
independently of
the message size

0.5 MB

A FlatData —“

Zero Copy Transfer Over SHMEM

Serialization/Deserialization
Performance Improvements

Optimizing the Code Generation Process

* Optimization 0: No optimization
* Optimization 1: Resolves typedef to the most basic type

typedef double Temperature; @final
typedef int32 PulseRate; struct VitalSigns {
typedef int32 RespirationRate; double temperature;
typedef int32 BloodPressure; int32 pulse;
‘ int32 respiration;

@final int32 diastolic_pressure;
struct VitalSigns { int32 systolic_pressure;

Temperature temperature; }

PulseRate pulse;

RespirationRate respiration;
BloodPressure diastolic_pressure;
BloodPressure systolic_pressure;

Optimizing the Code Generation Process

e Optimization 2: More aggressive optimization techniques
including inline expansion of nested types and serialization/
deserialization of consecutive members with a single copy

@final @final

struct PixelRGB { ‘ struct Image{
intl6r; /* width and height are part of the array */

intl6 g; int16 member[2359298];
intl6 b; b

|5

@final
struct Image{

int16 width;

int16 height;

PixelRGB data[786432];
b

Serialization/Deserialization Improvements

 Alias optimization (-optimization 1)

typedef double Temperature;
typedef int32 PulseRate;
typedef int32 RespirationRate;
typedef int32 BloodPressure;

Serialization Time (usec)

@final
struct VitalSigns {

Temperature temperature;
PulseRate pulse;

RespirationRate respiration;
BloodPressure diastolic_pressure;
BloodPressure systolic_pressure;

| Connext DDS 5.3.1 Connext DDS 6

Serialization/Deserialization Improvements

* Inline expansion of nested types (-optimization 2)

@final

struct PixelRGB {
intl6 r;
intl6 g;
intl6 b;

b

@final
struct Image{

|5

PixelRGB data[786432];

Serialization Time (usec)

0.2

Connext DDS 5.3.1 Connext DDS 6

XCDR versus ProtoBuf (Serialization Size)

ot po Chart Title
struct Point
{ 4000000
ﬂoat A; 3500000
float B;
}; 3000000
typedef sequence< Point, 2500000
maxSize> SequenceOfPoints; ool B
B ProtoBuf
@ﬁnal 1500000
struct RadarSweep

1000000
{

500000
SequenceOfPoints samples;

|5 0

Serialization Size (Bytes)

DynamicData Performance
Improvements

DynamicData Peformance Improvements

* DynamicData implementation has been
rewritten from scratch to make it more
performant

* Better in-memory representation for out-of-order
member access

* Uses same engine for serialization/deserialization
than generated code

DynamicData Performance Improvements

* Any API that takes member name can use a hierarchical
member name. No need to bind.

struct Bar {
long member long;

b g

struct Foo {
Bar member bar;

b g

long longVal = foo dyndata.get long(
“member bar.member long”,
DDS DYNAMIC DATA MEMBER ID UNSPECIFIED);

* Hierarchical name access is as efficient as bind/unbind
access

Performance Improvements Accessing Members

* One-level binding performance improvements: 3.5x
faster (bind, set_long, unbind, bind, get_long, unbind)

* Set/Get complex member (set_complex_member,
get _complex_member): 2.7x faster

* Set/Get string: 1.3x faster
 Setting large octet sequence: hundreds of times faster

» Setting and getting members of a nested complex
sequence (100 elements) using hierarchical name: 305x

faster

Connector Performance Improvements

Time to access every element in an array of a Platform -
Intel i7 6-core CPU

user defined type 3.33GHz
1.00E+01 12 GB RAM

CentOS Linux
1.00E+00 1 Gb network

1.00E-01

1.00E-02
5.3.0 Non-primitive

===6.0.0 Non-primitive
1.00E-03

1.00E-04

=
[
2
L
=
L
—
L
>
4
L
>
('8
(%]
(%]
wl
O
O
<
©)
[t
i
=
-
-
<
[
(©)
-

1.00E-05
32 64 128 256 512 1024 2048 4096

NUMBER OF ELEMENTS IN ARRAY

Performance Improvements Sending Samples

Throughput (Mbps)

Platform
Intel i7 6-core CPU
3.33GHz
12 GB RAM
CentOS Linux
1 Gb network

Content Filter Performance
Improvements

Content Filter Topics Enhancements

e Performance optimization for CFT
— Only deserializing the filtered fields (instead of the whole sample)

1-1 Maximum Throughput over Shared memory Platform
Intel i7 6-core CPU
6.0.0 5.3.1 3.33GHz
12 GB RAM
CentOS Linux

128 256 512 1024 2048 4096 8192 16384 32768 65536
Size

Discovery Bandwidth Reduction:
TypeObject Compression

TypeObject Compression

* TypeObject describes data types: used for type matching

truct Position_vi .y
> ;ngle lzt:]i-tua\e,' { TypeObject: VehicleData_v2 struct Position_v1 {
’ 3 L]
. . ————————————————————————— double latltUde,
}.double longitude; double longitude;
’ ¥
@mutable @nutable
sth:§ ¥§2;§1$22§3I2§DF struct VehicleData vl {
) key int32 vehiclelD;
Position_vl position; gosition vl position;
@default(©) double speed; A\ -
¥

. For complex types, TypeObject could be pretty large

. 6.0.0 drastically reduces TypeObject’s serialized size
Compression enabled by default. Configurable through DDS_DiscoveryConfigQosPolicy’s

endpoint_type_object Ib_serialization_threshold

Discovery Bandwidth Improvements

SubscriptionData PublicationData

Connext DDS 5.3.1 M Connext DDS 6

©2019 Real-Time Innovations, Inc

NG e Y VD, WSRO, G Ny

&

AN, A

VS DR B R

-

2% :“‘\ ~ X .
‘!? _elnnova‘uons, Inc

Connext 6 Security Support

e . including Micro, Pro, Infrastructure
Services, and tools

* Full Compliance with OMG DDS Security 1.1 Built-in Plugins:
— Plugins Configuration
— Protection Kinds
— Data Tagging

* OMG DDS Security 1.1:

— New Protection Kinds

— Governance Compatibility Detection
— Revised Permissions

— AuthRequest

— Other (API changes, XSD changes)

©2019 Real-Time Innovations, Inc

Extensible Types

X-Types Specification: Components

N Type System |

” ' ~
. ~ -

. 0 ~_

Type Data Language
Representation Representation Binding

©2019 Real-Time Innovations, Inc

X-Types Specification: Type Evolution

@ struct Position_v1 {

, double latitude;
‘\ ﬁ%é double longitude;
¥
VehicleData_vl1 | struct VehicleData v1 {
“ . ‘ @key int32 vehiclelD;

Position_v1 position;

s

©2019 Real-Time Innovations, Inc

X-Types Specification: Type Evolution

struct Position_v1 {
double latitude;

double longitude; \‘@ \
}s VehicleData_v1
struct VehicleData vl { . .

@key int32 vehiclelD;
Position_v1 position;

}s

VehicleData_v2
struct VehicleData_v2 {
@key int32 vehicleID; ‘ ‘

Position_v1 position;
@default(©) double speed;
¥

©2019 Real-Time Innovations, Inc

X-Types Specification: Type Evolution

}s

}s

}s

}s

}s

struct Position_v1 {

double latitude;
double longitude;

struct Position_v2 {

double latitude;
double longitude;
@default(@) double altitude;

@mutable
struct VehicleData_v1 {

@key int32 vehiclelD;
Position_v1 position;

@mutable
struct VehicleData_v2 {

@key int32 vehiclelD;
Position_v1 position;
@default(@) double speed;

@mutable
struct VehicleData_v3 {

@key int32 vehiclelD;
Position_v2 position;
@default(@) double speed;

A

N\

VehicleData_v1

VehicleData_v2

VehicleData_v3

4

©2019 Real-Time Innovations, Inc

X-Types 1.2 and IDL 4.1/4.2 in Connext 6

More Flexible EXTENSIBLE Extensibility:

More efficient data representation (wire format) through configurable
using new DataRepresentationQosPolicy

— Final Types
— Extensible (Append) Types
— Mutable Types

Fine-grained control for type matching

New IDL notation for fix-width integer types: int8, intl6, int32, int64, uint§,
uintl6, uint32, uinte4

New annotations: @appendable, @final, @mutable, @value, @default, @range,
@min, @max, @unit, @default_literal

©2019 Real-Time Innovations, Inc

More Flexible EXTENSIBLE Extensibility (APPEND)

Before XCDR2, appendable (extensible) types became incompatible if

nested structure is extended with additional fields at the end

@appendable

struct Coordinatesl1 {
float x;
floaty;

|5

<——>

@appendable

struct Coordinates2 {
float x;
float y;
float z; // Extra field

b

@appendable

struct ObservedPosition1 {
Coordinatesl position;
int64 timestamp;

|5

@appendable

struct ObservedPosition2 {
Coordinates2 position;
int64 timestamp;

|5

@appendable
struct Rectanglel {

Coordinatesl bottom_left;

Coordinatesl top_right;
2

@appendable
struct Rectangle2 {

Coordinates2 bottom_left;

Coordinates2 top_right;
2

©2019 Real-Time Innovations,

Inc

New IDL Annotations

struct Position {
@range(-90,90)
double latitude;
@min(-180)
@max(180)
double longitude;

struct Position {
@default(45)
double latitude;
@default(90)
double longitude;

|5

@range, @max, @min

— Enforced during serialization/deserialization

— Not propagated with TypeObject
— Not used for matching

@unit
— Only informative. Not enforced
— Not propagated with TypeObject
— Not used for matching

@default _literal
— Used to specify default value for Enums

— Not used for matching
— Not propagated with TypeObject

@default
— Used to initialize primitive member
— Not used for matching
— Not propagated with TypeObiject

enum Color {

@value(3)
RED,
@value(4)

@default_literal

BLUE,

@value(127)

GREEN

©2019 Real-Time Innovations, Inc

NG e Y VD, WSRO, G Ny

&

AN, A

VS DR B R

-

2% :“‘\ ~ X .
‘!? _elnnova‘uons, Inc

Instance Scalable Distribution and
Management

Instances

DataWriter Data Sample:

Update for an instance

Type

Key

| Vehicle ID Latitucle Vehicle ID Latitude Longitude l

-122.01 -87.65
-3.59 -115.14
-3.7 2.18

Instance:
Identified
by key

—

©2019 Real-Time Innovations, Inc

Focus Areas
/ Resource Management \ / Instance State Transmission \

DDDDDDDD

AN
N O
NS

/ Content Filtering Debuggability

Y

_ NS /

©2019 Real-Time Innovations, Inc

Efficient Instance Content Filtering

Information World is Sparsely Subscribed
Instance Universe

(Potentially Hundreds of Thousands) Subscribers

QD&Q\

©2019 Real-Time Innovations, Inc

Efficient Instance Content Filtering

Information World is Sparsely Subscribed
Instance Universe

(Potentially Hundreds of Thousands) Subscribers

O O

. O ol)
O

O : ol &

. = oD

= O

O O

® 2 ol ()
O

©2019 Real-Time Innovations, Inc

Connector: Python and Javascript
APIs

RTI Connector

- e Simplified DDS
API

* Leverage XML
definition of
DDS entities

DDS Application)
Configuration Conﬁgure
(MyApp.xml)

Join DDS
Create all Entities

Connect()

Inputl :

g‘ftu;jtl DDS DATABUS y Ge.t sta rtgd N

Output2 minutes (JUSt
program API | pip/npm install)

Is simple reads/writes

neden
getinput(“Inputl”).read();

getOutput(“Outputl”).write(); P .
Use your favorite Language: - i @ ;
python” I ,

©2019 Real-Time Innovations, Inc

Python and Javascript APIs

<domain_participant name="MySubParticipant" domain_ref="MyDomainLibrary::MyDomain">

import rticonnextdds_connector as rti

<subscriber name="MySubscriber">
<data_reader name="MySquareReader" topic_ref="Square" />
</subscriber>

</domain_participant>

with rti.open_connector(
config_name = "MyParticipantLibrary::MySubParticipant”,

url = file_path + "/../ShapeExample.xml") as connector:

input = connector.get_input("MySubscriber::MySquareReader") ° Simpliﬁed DDS API
print("Waiting for publications...") . . .
input.wait_for_publications() # wait for at least one matching publication () Lever‘age XML deﬁnltlon

print("Waiting for data...")
for i in range(l, 500):
input.wait() # wait for data on
input.take()
for sample in input.samples.valid_data_iter:
You can get all the fields in a get dictionary()
data sample.get _dictionary()
x = data['x']
y = data['y']

this input

Or you can access the field individually

size = sample.get_number ("shapesize")
color = sample.get string("color")
print("Received x: " + repr(x) + " y: " + repr(y)

size: " + repr(size) + " color:

of DDS entities
e Get started in minutes
(just pip/npm install)

+

" + repr(color))

©2019 Real-Time Innovations, Inc

Productized this year (Q4)

* Major robustness improvements
* Redesigned APls: python- and js-friendly

* New functionality:
— Dispose and unregister

— Waiting for data, for discovery, and for acks
— More flexible and efficient access to the data samples

— Support for XTypes
* New documentation (preview)
* NET Core and Go APIs available as experimental

Coherent Access Across Topics

C_oherent Access Across Topics

struct CompetitorData
{

Topic 1 @key long Athleteld;

CompetitorData \ long long Time;

struct

Topic 2 ?ompetltorRanklng

ComptetitorRanking @key long Athleteld:
short Rank;

|8

©2019 Real-Time Innovations, Inc

C_oherent Access Across Topics

(2, 96.778) (1, 95.678)

CompetitorData
DW

CompetitorRanking
DW

(2,2) (1, 1)

AN

CompetitorData
DR

DR

CompetitorRanking

1 (Mary) 90.238
2 (Lucy) 89.345
Athleteld m .
Inconsistent State!!!
1 (Mary) 1
2 (Lucy) 2

©2019 Real-Time Innovations, Inc

C_oherent Access Across Topics

2
=< "
V24

4

Y

Publisher::begin_coherent_set()
(2,96.778) (1, 95.678)

CompetitorData

CompetitorRanking
DW

(2,2) (1, 1)

Publisher::end_coherent_set()

AN

CompetitorData
DR

DR

CompetitorRanking

1 (Mary) 95.678
2 (Lucy) 96.778
1 (Mary) 1
2 (Lucy) 2

©2019 Real-Time Innovations, Inc

Coherent Access Across Topics: How to Configure

* DataWriters that require ordered and/or coherent access
must belong to the same Publisher

e DataReaders must belong to the same DDS Subscriber

* PresentationQosPolicy in Publisher/Subscriber must be set
as follows:
access_scope = GROUP_PRESENTATION_QOS
ordered_access = TRUE (for ordered access)
coherent_access = TRUE (for coherent access)

Debuggability

Challenges in lloT System: Debuggability

[2] * Complex systems
 Difficult to know

what Is going or

- Routing Service
e‘/ * Our goal: to make
easier to debug
these systems

GATEWAY

Room Smart Patient .
Alarming Monitor @ Infusion Pump
b 4
b [
[}

BN Data Recording

©2019 Real-Time Innovations, Inc

Customer Y’: Memory leak issue

* RS was crashing

* System was running out
of memory after running
RS for some time

- * Several weeks back and
S CK® forward

NDDS[WARNG]: RTIOsapiHeap allocateBufferAligned:errno =12

©2019 Real-Time Innovations, Inc

Customer ‘Y’: Memory leak issue

<reader data lifecycle>

<autopurge nowriter samples delay>
<sec>20</sec>
<nanosec>0</nanosec>

</autopurge nowriter samples delay>

</reader data lifecycle>

* ... a configuration
issue!lll They were
leaking instances

* The problem:
— Instance lifecycle

— We knew about it, and
solved in QoS, BUT

e Customer changed QoS
profile

©2019 Real-Time Innovations, Inc

Focus Areas
/ Statistics Collection \ / Monitoring \

l||| ‘@

A /
/ Enhanced Debugging Information \

AN

/ Logging Enhancements

©2019 Real-Time Innovations, Inc

Instance Statistics

e Gather instance statistics:

— How many instances are there in the
system?

— What was the maximum number of
instances?
* Expose those statistics

— As part of entity’s statuses
— As part of the monitoring libraries

©2019 Real-Time Innovations, Inc

Large Data statistics

RTPS fragmentation use cases:
— Systems with large data types
— Networks with no IP-fragmentation

Currently hard to identify when there are
communication issues

Gather fragments statistics:
— Reassembled samples
— Incomplete samples
— Received fragments
— Missing fragments
— Sent fragments

Expose those statistics
— As part of writer/reader statuses
— As part of the monitoring libraries

RTPS Hdr

RTPS Hdr

RTPS Hdr

RTPS Hdr

RTPS Hdr

RTPS Hdr

| I
Image 1 Fragment 1/3 CEE——

Image 1 Fragment 2/3
Image 1 Fragment 3/3

Image 1 reassembled!

Image 2 Fragment 1/3

Image 2 Fragment 3/3 Q\

©2019 Real-Time Innovations, Inc

Missing Information: Debugging Clock-related Issues is Hard!
11:00

1100

©
O@ rX
lo = 1 =i ®_|%I

nnnnnnnnnnnnnnnnnnnnnnnnnn

Debugging Enhancements: Thread Information

e Added thread info to all RTI threads:

(gdb)

*

Id
1

O b w N

11
12
13
14
15
16
17

Target
Thread
Thread
Thread
Thread
Thread

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

info thread

Id Frame

Ox7fff£f7£fda’740 (LWP
Ox7£f£f££67d8700 (LWP
Ox7f£££5£d7700 (LWP
Ox7f£f£f££553¢c700 (LWP
Ox7f£f£f££4d3b700 (LWP
Ox7fffeb5ffb700 (LWP
Ox7fffe56e9700 (LWP
Ox7fffedcde’700 (LWP
Ox7fffc7£££700 (LWP
Ox7fffc77£e700 (LWP
Ox7fffco6f££d700 (LWP
Ox7fffcoe7£c700 (LWP
Ox7f£ffc5££fb700 (LWP

“HelloWorldApp"
"rcxDtb065£77db375"
"rcxEvt065£77db375"
"rcxITrudpvéd™

"rcxRO0065£77db375 ..

"rcxDtb065d35bda’78"
"rcxEvt065d35bda/8"
"rcxITrudpvéd"
"rcxR00065d35bda78"
"rcxR01065d35bda78"
"rcxR02065d35bda78"
"dds clTesterd" ..
"rcxR04065d35bda78"

©2019 Real-Time Innovations, Inc

Enhanced Logging

e 5.2.0:

PRESWriterHistoryDriver initializeSample:!serialize (Notreally helpful)

° 6.0.0 enhancements:

PRESWriterHistoryDriver initilalizeSample:serilialize sample error 1in
topic ‘PatientMonitoring' with type ‘PatientMetrics'

e Future Configurable context:

— Allow to configure the logging of relevant information (context) to all
the log messages: Domains, topic and type names...

[D=64 | MyParticipant/MyDataWriter | PatientMonitoring:PatientMetrics | WRITE]
PRESWriterHistoryDriver initializeSample:serilialize sample error

©2019 Real-Time Innovations, Inc

Final Remarks

Expanding lloT Systems: Layered Architecture

Connext 6 Capabilities
* Routing Service and Recording
= Service: New key capabilities for
D Mobile system Integration and better
scalability
Routing Service * New features to improve Large
N D icl . .
>/ Data transmission performance
* Connext DDS Secure: New Data-
Centric Security capabilities

GATEWAY * Extensible Types: Wire
efficiency and type evolution

improvements
Room Smart Patient
YO AN

improvements: Discovery,
DynamicData, Content-Filter,

remp 8P | EKG Serialization

* Better RTI platform integration

©2019 Real-Time Innovations, Inc

Expanding lloT Systems: Layered Architecture
Future Work
* Instance management and
= scalability improvements
* Debuggability improvements
- Routing Service * Integration with other

OPC-UA, MQTT, AUTOSAR

GATEWAY

Room Smart Patient
Alarming Monitor é Infusion Pump

m Ventilator Data Recording

©2019 Real-Time Innovations,

Inc

Where to Find More Information

* RTI Blog: https://www.rti.com/blog

 RTI Website: http://www.rti.com

* RTI Community: https://community.rti.com/

©2019 Real-Time Innovations, Inc

Thank you

Connext’
2019

©2019 Real-Time Innovations, Inc

