
SAFETY CRITICAL EMBEDDED SYSTEMS

27 February 2008

Designing and debugging real-time
distributed systems

� Real-time system designers and embedded
software developers are very familiar with the
tools and techniques for designing, developing
and debugging standalone or loosely coupled
embedded systems. UML may be used at the
design stage, an IDE during development and
debuggers and logic analysers (amongst other
tools) at the integration and debug phases.
However, as connectivity becomes the norm,
systems are becoming ever more distributed;
what used to be a few nodes connected togeth-
er with clear functional separation between the
applications on each node, is now becoming
tens or hundreds of nodes with logical appli-
cations spread across them. Worse, such
 distributed systems are becoming increasingly
heterogeneous in terms of both operating
 systems and executing processors.

The idea of a “platform” for development has
long pervaded the real-time embedded design
space as a means to define the application de-
velopment environment separately from the un-
derlying (and often very complex) real-time
hardware, protocol stacks and device drivers.
Much as the operating system (OS) evolved to
provide the fundamental building block of
standalone system development platforms, real-
time middleware has evolved to address the dis-
tributed systems development challenges of
real-time network performance, scalability and

heterogeneous processor and operating system
support. And as has already happened in the
evolution of the standard real-time operating
system, new tools are becoming available to sup-
port development, debug and maintenance of
the target environment – in this case, real-time
applications in large distributed systems. From
the individual application developer perspective,
if the network is now the target system, what are
the basic capabilities which must be provided by
an application development platform? These
are: communication between threads of execu-
tion, synchronisation of events, and controlled
latency and efficient use of the network re-
sources.

Communication and synchronisation are fair-
ly obvious distributed platform service re-
quirements and are analogous to the services
provided by an OS, only now they have to run
transparently across a network infrastructure of
heterogeneous OS and processors with all that
implies in terms of byte ordering and data rep-
resentation formats. It should ideally use a
mechanism that does not require the develop-
er to have an explicit understanding of the lo-
cation of the intended receiver of a message or
synchronising thread so that the network can be
treated as a single target system from an appli-
cation development perspective. There are sev-
eral middleware solutions which support this

approach, such as JMS and DDS (data distri-
butions service) from the Object Management
Group (OMG). But only solutions such as DDS
explicitly address the third point; controlled la-
tency and efficient use of (target) network re-
sources, which is a critical issue in real-time
applications. DDS provides messaging and
synchronisation similar to JMS, but additionally
incorporates a mechanism called Quality of
Service (QoS). QoS brings to the application
level the means to explicitly define the level of
service (priority, performance, reliability etc) re-
quired between the originator of a message or
synchronisation request, and the recipient.

DDS treats the target network somewhat like a
state machine, recognizing that real-time sys-
tems are data driven and it is the arrival,
movement, transition and consumption of
data that fundamentally defines the operation
of a real-time system. Some data is critical and
needs to be obtained and processed within con-
trolled/fixed latencies, most especially across the
network. Moreover, some data needs to be per-
sisted for defined periods of time so it can be
used in computation; other data may need to be
reliably delivered but is less time-critical. QoS
facilitates all these requirements and more.

One of the easiest ways to make the networked
target environment more debuggable is to de-

By Geoff Revill, RTI

This article identifies the issues
of real-time distributed system

development and discusses
how development platforms
and tools have to evolve to

address this challenging new
environment.

SAFETY CRITICAL EMBEDDED SYSTEMS

fine strong interfaces between modules that are
independently testable. What good middleware
does is allow you to completely specify the data

interaction through quality of service which
forms a “contract” for the application. DDS for
example allows a data source to specify not only

the data type, but also whether the data is sent
with a “send once” or “retry until” semantic,
how big a history to store for late-arriving re-
ceivers, the priority of this source as compared
to others, and the minimum rate at which the
data will be sent, as well as many more possi-
bilities. By setting these explicitly many of the
soft issues that creep up in integration can be
addressed quickly by matching the promised
behavior to requested one. DDS middleware
will even provide warnings at runtime when
contracts are not met.

We do not have a complete application devel-
opment platform until we have the tools to sup-
port the environment. Ask any support or
maintenance engineer and they will tell you that
they need three things: good documentation,
great tools and code written to expose the state
and event parameters as easily as possible. Cur-
rent toolchains that operate on a single node
can still be used as normal, and in effect can be
used for white box testing in this isolated envi-
ronment. In addition, the data-driven (state
machine) nature of the DDS distributed appli-
cation development platform means that white
box testing can be easily achieved. The real chal-
lenge for developers is isolation, identification
and correction of the problems that are exhib-
ited at the integration stage, when individual

RTI Analyser is a system level debugging tool

SAFETY CRITICAL EMBEDDED SYSTEMS

distributed sub-components are connected
and the network starts – for the first time - to
execute as the target environment.

Most engineers are familiar with debugging
within a single-board environment, and will
have developed a high degree of debug com-

petence in fixing hard faults, i.e. faults that halt
or crash the process. These are relatively easy to
debug because you can normally work back-
wards from the state of the crash or, if you were
really lucky, you could get it to crash in a de-
bugger and you were home free. The nastiest
hard faults to deal with are normally multi-
threading related, so it comes as no surprise that
as we move to larger, more complex distributed
systems you will see more and more of these
types of faults; every node will have its own
thread(s) of execution, potentially working on
the same data at the same time received from
across the distributed system architecture.

Distributed systems are much more likely to be
subject to numerous types of soft faults. In
these cases, no application crashes, but the
warning lights are flashing and the distributed
application either performs poorly or not at all.
There are numerous types of soft faults, but
many of them come down to the synchronisa-
tion of data generation and processing across
many machines. One example, for instance, is
the effect of a single dropped message; if that
message is one sample of an update of data it
might not be a big deal, but if it is transitional
event or command, you could suddenly have
the system in an unexpected state. Moreover,
you may not be able to detect this until some

RTI Analyser showing the QoS mismatch error in “ownership” between a DataReader and
DataWriter

February 2008 30

SAFETY CRITICAL EMBEDDED SYSTEMS

time after the initial fault occurred, leading to
a debugging nightmare.

This is just one type of soft fault. Many others
occur regularly: high latencies (either sus-
tained or periodic) which cause control loops to
lose stability, massive data dropouts, unex-
pectedly blocking applications, systems that
work in the lab but fail when scaled up, data

mismatches between what is provided and
what is expected etc. Thus for distributed sys-
tems, it is vital to be able to get at the state and
event information without stopping or signif-
icantly slowing the system.

Starting with the basics: the first thing that you
need is a tool that allows you to generate com-
mon data types across all your boards and a

process that keeps them in synchronisation. If
you are using middleware you will normally
write your data types in a meta-language (IDL,
XML, XDR) and autogenerate the code that
handles the data types. Some systems will
allow you to create new types on the fly, but be-
ware that this is potentially a source of error
since it will be much harder to verify the usage
contract on data if the programmer does not
know its details. The next tool you need allows
you to design the applications and specify the
data and QoS requirements. This tool should be
used to design as many of the applications as
possible so that the QoS contract between
senders and receivers is met at design time
(much easier than debugging and fixing it
later). In an ideal world, this tool should inte-
grate with your normal design methodology.
For instance, UML users may wish to consider
SparxUML. This tool has interface description
components for middleware such as DDS to
make it easier to initially set these up. Once your
applications are deployed you need to make
sure that the communications are happening as
intended, QoS parameters are meshed and the
system is running. One of the first questions
you will need to answer at integration is “are
these distributed application functions talking
properly?” With the appropriate middleware in-
terrogation tool such as RTI Analyser you can
determine that the middleware has hooked up
the two applications and you can make sure
that the designers of the two application func-
tions actually met specification.

Such a tool also needs to show you which ob-
jects are talking, or more importantly, not talk-
ing, to each other and if not, suggest why not.
You can truly appreciate these tools when you
have 3 different subcontractors (or even just
free-willed developers) each building part of a
distributed application and it comes time to in-
tegrate. The root cause of most configuration
issues can be found quickly, accurately and with
a minimum of debate. You now have great up-
front design, good interfaces that people are fol-
lowing and yet it still is not working. This is
where distributed system-wide state and event
analysis becomes key. Typically there are the fol-
lowing three use cases during the debugging:

Monitoring of overall distributed system health.
In this case you might want to see the high-level
behavior of most of the applications in the sys-
tem. Tools such as RTView from SL Corporation
allow you to build one or many control panel
GUIs or data report views by listening to data put
out by the middleware as well as your applica-
tion. By selectively instrumenting key variables
in your application this can be a great first step
in isolating system issues and ensuring that your
system is running properly. Because tools like
RTView leverage the DDS middleware, the lo-
cation of source information for the displays

RTI protocol analyser allows you to see the on-wire traffic.

RTI Scope showing DDS topic data plotted against time with an oscilloscope-like display

does not need to be known. Merely knowing that it exists and in what for-
mat it is available (as defined by your data meta-language) and how the data
is made available (QoS) facilitates rapid assimilation of the information
needed for such useful system overview displays. Typically the applications
leveraging this sort of tool will have lots of different data sources, proba-
bly at low time resolution, that need to be combined and displayed together
to create a meaningful perspective of the system’s health. Tools like these
are often deployed as part of the maintenance environment for the dis-
tributed system and as such include easy-to-use GUI builders that allow
end-user-oriented displays of system data and health to be generated.

Getting into the guts of a faulty application. Once you have isolated which
nodes are having a problem with the system health tool you may need to
get more detailed and higher time resolution data from a few selected ap-
plications and their interaction across the network. Tools such as RTI
Scope provide this functionality by allowing the user to look at the dif-
ferent data streams into and out of an application graphically, in real-time,
without pre-configuration. Think of it as an oscilloscope for the data
coming out of an application from anywhere in the network, complete
with negative time triggering, multiple plot types (vs time, x vs y), derived
signals and the ability to save the data for post processing. RTI Scope still
operates at the defined data level, but is designed to capture fewer data
sources, in a minimally intrusive manner. It is ideal for capturing data that
runs out of bounds, or is delivered outside of its required throughput or
performance objectives. Its full knowledge of the underlying middleware
implementation means that it can discover the data sources and recipi-
ents and connect to them across the network, leveraging the middleware
to pull the data through for local analysis and visualisation.

Network Analysis. Sometimes the middleware is attempting to perform
the service requested of it by the application, but it is the underlying net-
work implementation itself that is not delivering as expected. Perhaps the
router is not routing properly, or there is an address corruption some-
where or any one of a number of other problems. At this point you are
left with no choice but to drill down to the wire and see what is hap-
pening. You reach for your protocol analyser and it gives you all the UDP
or other packet information you need. But it is meaningless unless you
can correlate it back up to the application. Well constructed distributed
middleware includes a standardised on-the-wire protocol; DDS for ex-
ample uses the open standard RTPS (real-time publish subscribe), and
as you would expect, such a platform includes the ability to monitor the
wire traffic and pull out the associated middleware packets, dissecting
them for correlation back to the application layer. RTI can help here too
with a dedicated protocol analyser, capable of providing a real-time dis-
play of all “on-the-wire” activity. �

31 February 2008

SAFETY CRITICAL EMBEDDED SYSTEMS

