Ensuring Real-Time
Data Integrity in
Networked Applications

The DDS standard can be used to guarantee the integrity of many types of
embedded systems, including building controls.

oday’s embedded systems are be-
Tcoming increasingly complex. Appli-

cations are becoming more distrib-
uted and individual systems (nodes) are
becoming more heterogeneous. Addi-
tional complexity is added with real-time
and dynamically changing data require-
ments. Just to make the problem even
more interesting, systems are required to
enable seamless access to the data they
contain through a variety of methods.
Low-level messaging, publish/subscribe,
data storage and SQL, and Web service
technologies are all expected to be fully in-
tegrated, scalable, and upgradeable in
today’s distributed application.

This article will describe how a data-
oriented approach enables integration of
the different communication and data
storage models.

Data-Centric Networks

Figure 1 depicts the hypothetical prob-
lem to be solved using this data-oriented
approach. The goal in this example is to
maintain the temperature in many build-
ings, using embedded controllers each
hooked to a number of sensors. Each of
these sensors and control processes are
connected through a transport mecha-
nism such as Ethernet, shared memory,
or bus backplane technologies.

Basic protocols such as TCP-UDP/IP
or higherlevel protocols such as HTTP
can be used to provide standardized com-
munication paths between each of the
nodes. To achieve data integrity and fail-
over capabilities, multiple controllers and
sensors can be deployed in each building.
Additionally, depending on the size of the
building, multiple controllers each with
appropriate backups could be distributed
for the different zones. Controllers within
a building need to collaborate, and all
data collected from the various sensors is
stored real-time in Web-accessible data-
bases. The external access and monitoring
applications should be able to receive real-
time updates from any sensor as well as
issue commands to the various controllers,
ensuring that a nice tropical temperature
is maintained. This simply stated exam-
ple is surprisingly complex, containing

AFRL Technology Horizons, April 2006

<

Intro

many elements of real-time messaging,
data integrity and failover capabilities, in-
tegration with databases, Web services, as
well as scalability and modularity concerns.

Data Model

In order to simplify this example, we
will only focus on the data the sensors
send to their controller and how it can be
distributed throughout the entire system.
The first step in a data-centric approach
is to carefully describe the data format in
a standards-based way, either IDL or XML,
and give it a “Topic” name. Topics are the
element of the Data Distribution Service
(DDS) middleware standard that identify
the data objects and provide the basic con-
nection between publishers and sub-
scribers. Subscribers — in this case, the
controllers — register topics with the mid-
dleware they wish to receive. Publishers —
the individual sensors in this example —
register topics with the middleware they
will send. If topics do not match, com-
munication will not take place.

building. Similarly, a sensor does not need
to know if it is sending its data to one or
multiple controllers.

Specification of the topic’s name is a
key element in a data-centric approach
to creating open systems. One could
name each sensor’s topic based on its
unique location in the building —
“Floor12Room3Sensor14” for example —
but the controller would then need to be
configured every time a sensor is added or
removed from the system.

Data Type

Specification of the topic’s data type is
equally as important as the topic’s name.
For this example, we are using Interface
Definition Language (IDL) because it is
an open standard and readily maps to
XML and SQL semantics.

In the definition of the topic’s type, one
or more data elements can be chosen to
be a “key.” Keys provide scalability, and
the communication infrastructure can use
the key to sort and order data from many

it letw
. i .

Muiliing 2 ™,

Mutliling | |

<y

.|.-[1 -.-. !

fi i [Ii I I
| =g = | =y
Terrgetallre Sead

R -

B D oy
7=

Figure 1. Distributed Temperature Control

Topics enable one to find specific in-
formation sources and sinks when archi-
tecting a loosely coupled system. A loosely
coupled system is one in which you do not
know a priori how many sensors or con-
trollers there are going to be or where
they all are. The controller can simply sub-
scribe to “TempSensor,” the topic’s name,
and receive all the sensor updates for that

www.afrlhorizons.com/et

s B

Cov ToC

sensors. In this example, without keys, one
would need to create individual topics for
each sensor. Topic names for these top-
ics might be: Sensor_1, Sensor_2, and so
on. Therefore, even though each topic is
comprised of the same data type, there
would still be multiple topics. With keys,
there is only one topic, “TempSensor,”
used to report temperatures.

55

o =

Embedded Technology

New sensors can be added without cre-
ating a new topic. The publishing appli-
cation would just need to set a new ID
when it was ready to publish. An applica-
tion can also have a situation where there
are multiple publishers of the same topic
with the same key defined. This enables
the application to provide redundancy.
Using our example, if we put two sensors
in the same room, giving them the same
key value states that they are measuring
the same piece of information. Managing
redundancy, should one or both sensors
report to the controller, is accomplished
though Quality-of-Service (QoS).

Quality-of-Service (QoS)

Data-centric communication provides
the ability to specify various parameters
like the rate of publication, rate of sub-
scription, how long the data is valid, and
many others. These QoS parameters allow
system designers to construct a distrib-
uted application based on the require-
ments for, and availability of, each spe-
cific piece of data. A data-centric
environment allows you to have a com-
munication mechanism that is custom tai-
lored to your distributed application’s spe-
cific requirements, yet remains a loosely
coupled design and architecture.

The ability to set QoS on a per-entity
basis is a significant capability provided
by DDS. Being able to specify different
QoS parameters for each individual topic,
publisher, or subscriber gives developers
many options when designing their sys-
tem. Through the combination of these
parameters, a system architect can con-
struct a distributed application to address
an entire range of requirements, from
simple communication patterns to com-
plex data interactions.

The following examples briefly detail
how one might leverage a few of the QoS
features in DDS:

* DOMAIN. A Domain is the basic DDS
construct used to bind individual pub-
lications and subscriptions together for
communication. A distributed applica-
tion can elect to use single or multiple
domains for its data-centric communi-
cations. In the example, different build-
ings map to different Domains. Domains
isolate communication, promote scala-
bility, and segregate different classifica-
tions of data.

PARTITION. The Partition QoS is a way
to logically separate Topics within a Do-
main. The value is a string. If a sub-
scriber sets this string, then it will only re-
ceive messages from publishers that have
set the same string. In context of our ex-
ample, partitions can be used to group
sensors on different floors. For exam-
ple, if we want to divide the building

34

<

Intro

into different zones, where each zone is
regulated by a dedicated controller, the
sensor and controller could set the par-
tition to “Floor 1” and “Floor 1-6,” re-
spectively. Here the controller will re-
ceive data from all sensors on floors 1
through 6. So using partitions makes it
easy to group what sensors are con-
nected to a controller, and a controller
can take over a different zone by chang-
ing or adding to its partition list.
OWNERSHIP. The ownership QoS spec-
ifies whether or not multiple publishers
can update the same data object and
how you achieve fault-tolerance using
DDS. Returning to our example, if we
have multiple sensors in the same room
and we only want to get data from the
primary (as long as it is functioning),
then the ownership QoS policy is set to
“Exclusive,” stating that only one sensor
can update that keyed value. Setting the
ownership policy to “Shared” is stating
that we can have multiple sensors in the
same room, reporting the same piece of
keyed data. In this case, the controller
would get updates from all sensors and
treat the values as the same measure-
ment.

DURABILITY. The durability QoS spec-
ifies whether past samples of data will
be available to newly joining subscribers.
Considering our example, if a controller
were to reboot rather than require all
sensors to resend their data, or require
the data to be sent at a periodic rate in
case the systems reboots, one simply gets
the latest published value for every at-
tached sensor. This effectively decouples
the system in time and provides a high
degree of data integrity.

HISTORY. History specifies how many
data samples will be stored for later de-
livery. Specifically, a rebooted controller
may want the last five samples from its
sensors, so that it can make sure that
readings are consistent.

RELIABILITY. Finally, the reliability QoS
may be set on a per topic basis and in-
forms the middleware that the sub-
scription should receive all data (no
missed samples) from a publication even
over non-reliable transports. For peri-
odic publications, reliability generally
doesn’t need to be set since you can just
get the updated value one sample pe-
riod later. Although periodic sensor data
doesn’t need to be delivered reliably,
synchronization commands between
controllers in this example could be.

Database Integration

The final element of our example sys-
tem is the integration of real-time data
and traditional relational databases. Since
both these technologies are data-centric

www.afrlhorizons.com/ et

s B

Cov ToC

and complementary, they can be com-
bined to enable a new class of applica-
tions. In particular, DDS can be used to
produce a truly decentralized distributed
database management system (DBMS),
while DBMS technology can be used to
provide persistence for DDS data.

IDL data models can be automatically
and cleanly mapped to SQL table
schemas. For example, the topic
“TempSensor” becomes a table named
“TempSensor” and the data contents,
identified by the key, become rows in the
table. Essentially, the database is simply
another subscription to the sensors’ up-
date and automatically receives current
data from all the distributed sensors.
Changes to the database are pushed to
entities that are interested in that partic-
ular topic/table name. Embedded appli-
cations don’t need to know SQL or ODBC
semantics, and the database applications
don’t need to know publish/subscribe se-
mantics.

For true data integrity and scalability,
databases should be distributed as well.
RTT’s SkyBoard solution implements a dis-
tributed shared database where fragments
of the shared database are kept in the data
caches of the hosts in the network on an
as-needed basis. Thus the database be-
comes a combination of the data stores
distributed throughout the system. When
anode updates a table by executing a SQL
INSERT, UPDATE, or DELETE statement
on the data-cache, the update is proac-
tively replicated to other hosts that access
this table via real-time publish-and-
subscribe messaging.

Finally, once data is automatically en-
tered and maintained in a DBMS, using
standard tools one can build a Web ap-
plication that accesses and manipulates
the database data. Thus the Web applica-
tion does not need to know how many
buildings, sensors, or controllers there
are in the system. Nor does the Web ap-
plication need to know the middleware
specifics that the temperature control sys-
tem is using to distribute data. The ap-
plication can just use SQL and ODBC to
read and change all of the available data
in the system, decoupling implementa-
tion specifics across the system.

By starting with the data model and de-
signing the systems following a net-
centric approach, we demonstrated a sys-
tem that seamlessly integrates a variety of
different communication paradigms while
still achieving a high degree of data integrity.

This article was written by Gordon Hunt,
Principal Applications Engineer at Real-
Time Innovations, Inc. of Santa Clara, CA.
For more information, contact Mr. Hunt at
Gordon. Hunt@rti.com or visit

http://info.ims.ca/5657-402.

AFRL Technology Horizons, April 2006

o =

