
February 2002
CommunicationUpdate

<<>>

by Dr. Gerardo-Pardo Castellote and Peter Bolton,
Real-Time Innovations, Inc.

F rom enterprise extranets to factory-floor control
subnets, the TCP/UDP/IP protocol suite has
become the communications framework of choice

for distributed applications. While the suite’s success
attests to the generality and power of the protocols, its
transport-level protocols are too low level to be used
directly for any but the simplest applications.
Consequently, higher-level protocols such as HTTP,
FTP, DHCP, DCE, RTP, DCOM and CORBA have
emerged. Each of these protocols was designed to fill a
niche, providing well-tuned functionality for specific
purposes or application domains.

The real-time publish-subscribe (RTPS) communi-
cations model is a wire protocol designed specifically for
data distribution among real-time applications and is
implemented “on top of” UDP. The RTPS protocol
defines the message format, interpretation and usage scenarios that
underlie all messages exchanged by the applications. The protocol
has already been adopted by the Interface for Distributed
Automation Group (www.ida-group.org), a consortium of indus-
trial automation companies, as the underlying communication
mechanism for industrial communication over standard Internet
Protocol (IP) networks built using Ethernet. Real-Time
Innovations (RTI) is expecting to submit the protocol specification
to the Internet Engineering Task Force (IETF) as an informational
Request for Comment (RFC) in the first quarter of 2002.

RTPS Protocol Goals
The RTPS protocol is designed for distributed, data-centric,

real-time applications. These applications have three fundamental

characteristics:

• Distributed: The system is composed of individual applications
running independently of each other on multiple nodes inter-
connected via a network.

• Data-centric: The system has communication patterns in which
some applications are producing information required by other
applications. This information can range from simple strings
(for example, timestamp and temperature of a boiler) to com-
plex structures composed of static and dynamic variables.

• Real-time: The sending and receiving applications have time
constraints that require the network I/O operation to complete
within a specific timeframe.

The publish-subscribe (PS) communications model forms the

Distributed applications can use UDP directly for simple data
distribution. When more sophisticated data distribution is required,
a wire protocol built on UDP can simplify development and ease
communications management.

Distributed Real-Time
Applications Now Have a Data
Distribution Protocol

RTPS Header RTPS Submessage RTPS Submessage RTPS Submessage

Submessage Header Submessage Payload

4 octets

RTPS SubmessageElementRTPS SubmessageElement

16 octets

Modular message compositionFigure 1

Reprinted from February 2002

CommunicationUpdate

basis of the protocol. It was selected because of its bandwidth effi-
ciency and simple programming interface. Other goals that drove
the specification include:

• Standard IP: Enables high-performance communication over
standard IP networks.

• Extensibility: Allows the protocol to be extended and
enhanced without breaking backward compatibility and inter-
operability.

• Configurability: Lets the programmer balance the require-
ments for reliability and timeliness for each application-to-
application communications “channel.”

• Real-time: Builds on UDP/IP so that applications don’t get
blocked by TCP retries.

• Modularity: Allows simple devices to implement a subset and
still participate in the network.

• Scalability: Enables systems to scale to potentially very large
networks.

In addition to fast, efficient communications, additional goals
were set to reduce the complexity of distributed application con-
figuration management:

• Plug-and-play: Allows applications and services to join and
leave the network in any sequence, at any time.

• Fault tolerance: Allows the creation of networks without
single points of failure.

• Type-safety: Prevents application programming errors from
compromising the operation of remote nodes.

Real-Time Publish-Subscribe Primer
Publish-subscribe communications has gained traction in

many networked applications in industrial automation, command
and control systems, financial communications and web-based
“push” technologies. Several features characterize publish-sub-
scribe architectures:

• Named publications: Applications communicate by sending
“issues” (samples) of user-defined publications. Publications
are identified by a name and type; users do not need to specify
computer addresses, routes and port numbers.

• Distinct declaration and delivery: Communications occur
in two phases: (1) declaration, in which applications
declare their intent to send issues of a specific publica-
tion and their interest to receive a publication’s issues,
and (2) delivery, in which the issues are sent from a pub-
lisher to the subscriber(s).

• Event-driven transfer: Communications occur only when
there’s a new issue. Data transfers are initiated by a pub-
lisher.

• One-to-many communications: There is typically more
than one subscriber for each publication.

Publish-subscribe has many advantages for real-time
applications, especially regarding latency and bandwidth.
For example:

• PS is more efficient than distributed objects (for example,
DCOM or CORBA) because subscribers do not need to send
request messages, and there is no need for polling.

• PS is capable of supporting many-to-many connectivity and
group subscriptions. It is thus well suited to dynamic environ-
ments with fault tolerance and applications that must scale to
many nodes.

• PS maps well to connectionless protocols. This means it can
take advantage of direct messaging to circumvent the TCP
overhead, and multicast technology to send data to multiple
subscribers simultaneously.

However, real-time applications require more functionality than
is provided by commercial publish-subscribe semantics. For
instance, real-time applications often require:

• Delivery timing control: Real-time applications must know
when data is delivered and how long it remains valid.

• Reliability control: Since reliable delivery conflicts with deter-
ministic timing, each time-constrained application needs to
specify its particular reliability characteristics (for example,
how long it is willing to wait).

• Fault-tolerance: The communications layer should not intro-
duce any single-node points of failure. Moreover, support for
“hot standby” or backup data production is often a requirement.

• Selective degradation: Each real-time logical data-channel
must be protected from the others. The performance of a
channel should not be affected by other channels slowing
due to dropouts, network congestion, receiver CPU overload
and so on.

RTPS Protocol Overview
The RTPS protocol was developed to provide applications with

the anonymous distribution of publication issues, using either reli-
able or unreliable messaging, to multiple subscribers. In addition,
RTPS includes protocols to handle the administrative chores under-
lying plug-and play and fault-tolerant distributed system configura-
tions. RTPS is implemented using UDP/IP and has its own retry
protocol for reliable communications.

RTPS Header RTPS Submessage RTPS Submessage

‘R’ ‘T’

8 bits 8 bits

‘P’ ‘S’

8 bits 8 bits

octet[2] RTPSProtocolVersion octet[2] RTPSVendorId

octet[4] HostId

octet[4] ApplicationId

RTPS HeaderFigure 2

Reprinted from February 2002

CommunicationUpdate

Any network protocol intended for communicating
among heterogeneous computers in an open network must
deal with issues such as the representation of information in
a machine-independent way, the unique identification of
objects and entities and the representation of time and
sequence numbers (to disambiguate messages in a
sequence). In addition, the broad design paradigms must
address goals such as backward compatibility and extensi-
bility. Depending on the intended use of the protocol, dif-
ferent design trade-offs are made.

Applied Standards
The approach taken in the RTPS protocol is to use

existing standards whenever possible, so long as the stan-
dard does not introduce overhead that would be unaccept-
able for real-time or embedded applications. These
standards then guide the implementation of the design para-
digms.

The RTPS message design derives directly from the Internet
Engineering Task Force (IETF) IPv6 standard. Like IPv6 all
RTPS messages have fixed header sizes. Moreover, RTPS uses
the concept of extension headers to add additional “header”
information prior to “payloads.” In addition, submessage
headers contain a header-length field that allows the receiver to
quickly navigate the daisy-chain or even to skip submessages.

The dynamic host configuration protocol (DHCP) also influ-
enced the design of the message formats. Like DHCP, RTPS
encodes parameters using tuples for key, length and value. This
encapsulation allows new parameter keys to be introduced in
future versions of the protocol without breaking backward com-
patibility. It also allows applications to efficiently constrain
themselves to the subsets of parameters they care about.

RTPS uses the Object Management Group (OMG) Common
Data Representation (CDR) encoding to represent data in a
machine-independent way. CDR specifies a set of primitive
types with agreed-upon lengths (for example, shorts are 2 octets,

doubles are 8 octets). In addition, RTPS uses the standard Network
Time Protocol (NTP) representation of time. This representation
uses a signed 32-bit integer representing seconds and a second
unsigned 32-bit integer representing fractions of seconds in units of
1/232 seconds.

Message Formats
The overall structure of an RTPS message is a single header

followed by a variable number of submessages. Each submessage
is aligned on a 32-bit boundary with respect to the start of the mes-
sage. The set of RTPS message formats is very rich. All messages
can be viewed as composition of a smaller set of well-known sub-
messages, each of which can be individually described and under-
stood. Each submessage is aligned to a 4-octet boundary so that it
can be manipulated independently of the previous one (Figure 1).
This design is based on the definition and reuse of a set of sub-
message elements such as sequence numbers, object IDs, bitmaps
and time stamps. The reuse of elements simplifies the under-
standing and construction of processing algorithms.

The entire context required to interpret a submessage must

RTPS Submessage TypesTable 1

Submessage Header Submessage Payload

SubmessageId flags octetsToNextHeaderE

8 bits 16 bits8 bits

1 bit

RTPS Submessage headerFigure 2

GAP Communicates a range of no longer relevant sequence numbers

Submessage Type

ACK

HEARTBEAT Communicates the sequence numbers of available data (publication issue or object parameter state)

Description

Acknowledges the receipt of all messages up to and including the designated sequence number

VAR Communicates parameter state data for a specific network object (RTPS objects have parameter sequences
that encapsulate the object’s properties; each VAR submessage includes the sequence number)

ISSUE

INFO_TS Communicates a timestamp applicable to the submessages that follow in the message.

Communicates publication issue data with an optional sequence number

INFO_SRC Indicates the address, HostID and ApplicationID of the source of the subsequent submessages
in the message

INFO_REPLY Indicates the address and port to which to send replies to subsequent submessages in the message

Reprinted from February 2002

CommunicationUpdate

appear ahead of the submessage. This allows incremental pro-
cessing of the submessages. The protocol uses standard messages
and elements for the meta-traffic used during the declaration
phase. The reuse of mechanisms simplifies the logic and reduces
code size.

RTPS uses detection to assure consistency. There are two basic
techniques to assure consistency: prevention and detection.
Prevention makes sure the system never gets into an inconsistent
state. Detection relies on extra information that allows inconsis-
tencies to be detected and corrected before they affect the state of
the system. Detection typically allows for higher-performance
implementations because it can optimize the common, error-free
path.

All RTPS messages start with a 16-octet header (Figure 2). The
first four octets contain the characters RTPS. The protocol version
is composed of two octets (major version and minor version). The
VendorId consists of two octets that allow discriminating among
different providers of protocol implementations. The HostId is 4-
octets and must be generated to be unique among all hosts in the
RTPS network; the ApplicationID is 4-octets and must be unique
among all applications within a host. Figure 2 illustrates the RTPS
header. Note that the RTPS header can be interpreted indepen-
dently of machine endianess because all information is processed
as octets.

All submessage headers have a fixed format encoding the sub-
message type, optional submessage elements, and a link to the next
submessage. This allows a message processor to identify an indi-
vidual message without needing to interpret the message contents
(Figure 3). There are eight types of submessages, each identified
by a unique SubmessageId, used for all communications, including
data distribution and configuration management (Table 1).

Real-Time Innovations, Inc.
155A Moffett Park Drive

Sunnyvale, CA 94089
phone: (408) 734-4200

fax: (408) 734-5009
web site: www.rti.com

Network Objects
The RTPS administers the configuration of applications and

services using a set of special, built-in network objects. These
objects use a composite state transfer (CST) protocol for applica-
tion and service discovery, and state communication. The CST pro-
tocol conveys information about the creation, destruction and
attributes of applications and their services among nodes using the
VAR, ACK, GAP, and HEARTBEAT submessages.

The full description of the submessage contents, reliable and
unreliable publish-subscribe protocols and CST protocols will be
contained in the full specification, which will be released to the
IETF in the first quarter of 2002.

The RTPS protocol is one part of RTI’s two-part policy to
establish standards for data distribution services for real-time
applications. The other effort is a set of data-centric publish-sub-
scribe application services. This standards effort is currently in the
form of an Object Management Group (OMG) Request for
Proposal (RFP) issued in September, 2001. More information on
this RFP can be found at http://www.omg.org/techprocess/meet-
ings/schedule/Data_Distribution_Service_RFP.html

Real-Time Innovations,
Sunnyvale, CA.
(408) 734-4200.
[www.rti.com].

Reprinted from February 2002

