
W
ired and wireless com-
munication networks
are making data collec-
tion and transmission

cheap and widespread. In the future,
networks will weave many devices and
subsystems into complex integrated
distributed systems that will become
the fabric of business and daily life.

Building such distributed systems is
far from simple; they must be assem-
bled from independently developed
software components. Integration, es-
pecially combined with real-time per-
formance demands, becomes the key
challenge.

This article outlines fundamental de-
sign principles that enable integration
of distributed systems from compo-
nents. I use a data-centric approach to
this design, as the data is the key ele-
ment that must flow through the vari-
ous systems.

The key to data-centric design is to
separate data from behavior. The data
and data-transfer contracts then be-
come the primary organizing con-
structs. With carefully controlled data
relationships and timing, the system
can then be built from independent
components with loosely coupled be-
haviors. Data changes drive the inter-

actions between components, not vice
versa as in traditional or object-ori-
ented design.

The resulting loosely coupled soft-
ware components with data-centric
interfaces are then integrated into a
working system through a data bus.
The data bus connects data producers
to consumers and enforces the asso-

ciated quality-of-service (QoS) con-
tracts on the data transfers. This de-
sign technique is naturally supported
by the Data Distribution Service
(DDS) specification (information
week.com/1295/ddj/spec) for real-time
systems, which is a standard from
the Object Management Group
 (omgwiki.org/dds). Implementations
of this standard are available from
many vendors.

The techniques described here are
proven in hundreds of mission-critical
applications including robotics, un-
manned vehicles, medical devices,
transportation, combat systems, fi-
nance, and simulation.

A Future Distributed System
To understand the dynamic nature of

next-generation distributed systems, it
helps to examine a representative sce-
nario: an air traffic control system. Air

traffic control in the future will inte-
grate a variety of disparate systems into
a seamless whole—a system of sys-
tems. On the edge is a real-time avion-
ics system inside the aircraft. The con-
trol tower in the center communicates
with the avionics system, and then out
to data servers at the airport. The sys-
tem thus comprises connectivity from
the “edge” (devices) to the “enterprise”
(infrastructure services).

The data in the avionics system
flows at high rates and is time-critical.
Violating timing constraints could re-
sult in the failure of the aircraft or
jeopardize safety. Although aircrafts
traditionally operate as independent
units, future aircraft must integrate
closely with automated traffic control
and ground systems.

The control tower is another inde-
pendent real-time system. It monitors
various aircraft in the region, coordi-
nates their traffic flow and generates
alarms to highlight unusual condi-
tions. The data is time-sensitive for
proper local and wide area system op-
eration. However, the system may
have greater tolerance for delays than
the avionics systems.

The control tower communicates
with the airport’s enterprise informa-
tion systems, which track flight status
and other data and may communicate
with multiple control towers and other
enterprise information systems. It also
must synthesize passenger, flight ar-
rival, and departure status informa-
tion. Because it isn’t in the time-critical

March 28, 2011 33informationweek.com

A Model For The Big Data Era
Data-centric architecture is becoming fashionable again By Rajive Joshi

This design approach recognizes the
essential invariant is the information
exchange between components.

path, the enterprise information sys-
tem can be more tolerant of delays.

Key Design Challenges
This so-called “system of systems”

must deal with a many issues, such as
correctly handling myriad differences in
data exchange, performance, and real-
time requirements. The architecture also
involves different technology stacks, de-
sign models, and component life cycles.

To support system growth and evo-
lution, the integration must be robust
enough to handle changes on either
side of an interface. To do this, only
minimal assumptions should be made
about the interfaces between sys-
tems—the interface specifications
should describe only the invariants in
the interaction. Behavior can then be
implemented independently by each
system; the interface between them
shouldn’t include any component-
specific state or behavior. This avoids
tight coupling.

The systems on either side of an in-
terface may differ in quantitative as-
pects of their behavior, including dif-
ferent data volumes, rates, and real-
time constraints. The term “impedance
mismatch” is shorthand for all the non-
functional differences in the informa-
tion exchange between two systems.
Critically, a developer can capture these
nonfunctional aspects of the informa-
tion exchange by attaching QoS attrib-
utes to the data transfer. With explicit
QoS terms, responses to impedance
mismatches can be automated, moni-
tored, and governed.

Principles Of Data-Centric Design
Data-centric design recognizes that

the essential invariant is the informa-
tion exchange between systems or
components. It describes the exchange
in terms of a “data model” and data
producers and consumers of the data,
and it relies on four basic principles:

1. Expose the data and metadata.
Data-centric design exposes the data

and metadata as first-class citizens, and
uses them as the primary means of in-
terconnecting heterogeneous systems.
Data is the primary means of describ-
ing the world as it is, independent of
any component-specific behavior.
Metadata refers to information about
the data’s layout and structure. A data-
centric interface is defined by the meta-
data, which must contain all of the
infor ma tion required to encode and
de code the data in a given format.

2. Hide the behavior. Data-centric
design hides any direct references to
operations or code of the component
interfaces. An interface can’t embed
any component-specific state or behav-
ior. Components implement behaviors
that can change the data or respond to
changes in data (the “world model”).

3. Delegate data handling to a data
bus. Separation of data handling and
application logic is necessary for loosely
coupled systems. The component ap-
plication logic should focus on manip-
ulating interface data, not managing
and distributing it. The data bus is re-
sponsible for data handling and is the
authoritative source of the world model
shared amongst the components.

4. Explicitly define data-handling
contracts. These contracts should be
specified by the application at design
time, and enforced by the data bus at
runtime. Delivery contracts specify the
QoS attributes on data produced and
consumed by a component, including
timing, reliability, durability, etc. The
data bus examines these “contracts,”
and if compatible, establishes data
flows. The data bus then enforces QoS
contracts, thereby providing the appli-
cation code clear, known expectations.

In contrast, traditional messaging
designs focus on functional or opera-
tional interfaces and overlook imped-
ance problems. The interface QoS and
timing aren’t modeled, so all the inter-
face state and communications issues
are implicitly assumed. The result: a
brittle, tightly coupled design. Adding

components or interactions violates
the assumptions, forcing system de-
signers to rework the interfaces. The
architecture becomes very hard to
maintain and evolve.

Data-Centric Interfaces
A data-centric interface specifies

the common, logically shared data
model produced and consumed by a
component, along with the QoS
 requirements.

A component can be seen as plug-
ging into a software data bus via the
data-centric interface that defines data
inputs and outputs. When multiple
components are present, the result is
an information-driven, data-centric
architecture in which data updates
drive interactions between loosely
coupled components.

A data-centric architecture reduces
the integration problem since a com-
ponent only has to integrate with the
common data model intrinsic to the
problem domain. Components imple-
ment data-centric interfaces that de-
clare what they produce or consume.
The QoS contracts ensure timing, reli-
ability, and other requirements are met
for any component, new or old. Thus,
the system can grow and evolve.

The Data Bus
From a component programmer’s per-

spective, the application code simply
consumes and produces logically shared
input and output variables on the data
bus. Responsibility for data routing, de-
livery, and managing QoS is decoupled
from the application logic and delegated
to the implementation of the data bus.

The data bus requirements are ful-
filled naturally by software that con-
forms with the DDS specification. That
document defines the data-centric,
publish-subscribe communication
model for building distributed systems.

Several implementations of the DDS
standard are available today, including
an open source implementation and

36 March 28, 2011 informationweek.com

Clouds today come in two basic flavors: the private cloud (wholly behind the firewall) and
the public cloud, which runs on remote hosts. The private cloud currently enjoys IT management’s
attention, because taking lots of individual servers, putting them into a pool, and parceling out
their capabilities as needed has tremendous advantages for the data center. Of these, none is more
prominent than the ability to scale up resources when projects demand and back down again
when the need declines.

Private clouds require little programming change. Instances of virtual machines are spun up
from an administrative console, the application is migrated, and, by and large, it works as ex-
pected.

The public cloud—whose leading hosts include Amazon, Google, and Microsoft—is a different
thing altogether. Code can’t be migrated simply to these hosts and expected to work correctly. It

won’t. Google’s App Engine, for example, allows only a select list of core Java classes to run on its platform. If your code
relies on a proscribed class, your app won’t run there.

Moreover, each platform uses its own unique data store, which doesn’t run at all like conventional relational database man-
agement systems. (Microsoft Azure does offer a “cloudified” version of its SQL Server database product as an option.) So, if you
plan to run applications in the public cloud, you’ll have to invest considerable effort either porting existing code or writing new
apps. Doing so will reveal a second problem: No two platforms use the same API. So, from the get-go, you’ll be coding to a pro-
prietary platform, with all the constraints that implies.

This problem is widely acknowledged, but efforts to provide a universal API, such as the Simple Cloud API, have garnered
little enthusiasm from cloud hosts. This puts IT in a bind. If you’re considering using the public cloud, therefore, run extensive
pilots before committing to a platform, and know the platform’s limitations and costs intimately before making it the basis of
an important app. You’re likely to be residing there a long time.

Andrew Binstock is the executive editor of Dr. Dobb’s. He can be reached at alb@drdobbs.com.

several commercial versions from RTI,
Gallium, and Milsoft, among others.
Leading DDS implementations provide
deterministic low-latency, high-
throughput messaging and data
caching. While the most natural fit for
these products has been in industrial,
avionic, and military applications, they
also have long been used in financial
services, where the rapid distribution
and processing of data is critical. And
increasingly, as companies must handle
large volumes of data, these products
are entering business IT organizations.

One of the principal benefits for busi-

nesses is that a data-centric architecture
paves the way for the use of generic in-
frastructure components. These include
databases, complex event processing
modules, and Web services. These com-
ponents plug into the bus without the
need for extensive custom coding to in-
tegrate them into the computing infra-
structure. Done right, this model makes
it possible for a spreadsheet to automat-
ically populate cells from data items it
subscribes to from a larger data fabric.

Because data-centric architectures
have no direct coupling among the ap-
plication component interfaces, com-

ponents in the DDS model can be
added and removed in a modular and
scalable manner, letting companies add
producers and consumers of data with-
out a jump in complexity. As data vol-
ume expands, the simplicity of this ar-
chitecture is likely to become a crucial
part of a business’s ability to keep up.

Rajive Joshi has worked in high-perfor-
mance real-time distributed systems for
more than 18 years, including implement-
ing distributed messaging and data distri-
bution caching infrastructure. Write to us
at iwletters@techweb.com.

38 March 28, 2011 informationweek.com

Cloud Programming? Ready, Set ... Yow

By Andrew Binstock

